L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.587 − 1.62i)3-s + (0.499 − 0.866i)4-s + (0.386 + 0.669i)5-s + (0.306 + 1.70i)6-s + (1.82 − 1.91i)7-s + 0.999i·8-s + (−2.31 − 1.91i)9-s + (−0.669 − 0.386i)10-s + (3.31 + 1.91i)11-s + (−1.11 − 1.32i)12-s − i·13-s + (−0.627 + 2.57i)14-s + (1.31 − 0.236i)15-s + (−0.5 − 0.866i)16-s + (0.460 − 0.797i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.339 − 0.940i)3-s + (0.249 − 0.433i)4-s + (0.172 + 0.299i)5-s + (0.124 + 0.695i)6-s + (0.691 − 0.722i)7-s + 0.353i·8-s + (−0.770 − 0.637i)9-s + (−0.211 − 0.122i)10-s + (0.999 + 0.576i)11-s + (−0.322 − 0.382i)12-s − 0.277i·13-s + (−0.167 + 0.686i)14-s + (0.340 − 0.0610i)15-s + (−0.125 − 0.216i)16-s + (0.111 − 0.193i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.18761 - 0.635047i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18761 - 0.635047i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.587 + 1.62i)T \) |
| 7 | \( 1 + (-1.82 + 1.91i)T \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + (-0.386 - 0.669i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.31 - 1.91i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.460 + 0.797i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.92 + 1.68i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.80 - 2.19i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.669iT - 29T^{2} \) |
| 31 | \( 1 + (-0.824 - 0.475i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.37 + 5.84i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.36T + 41T^{2} \) |
| 43 | \( 1 - 1.18T + 43T^{2} \) |
| 47 | \( 1 + (5.17 + 8.95i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.30 - 4.21i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.98 + 3.43i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.358 - 0.207i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.70 - 8.14i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.24iT - 71T^{2} \) |
| 73 | \( 1 + (-7.63 - 4.40i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.47 - 11.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2.22T + 83T^{2} \) |
| 89 | \( 1 + (-2.00 - 3.48i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.41iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57067868539274057908249731171, −9.651170043577024848248482424629, −8.752214731552335615082370481406, −7.85437694692080428423818013418, −7.15141661083880224900046716793, −6.50824376983729519090327807164, −5.29343320860356202123739393286, −3.80514878785079773043027855798, −2.22999335299966813410017565924, −1.03955522277227443757726973694,
1.63174007043946116620705964588, 3.02941841931400028383690204229, 4.14028132600387706584398319058, 5.24423011774837570325900815043, 6.27829151769930758728939648092, 7.80765456519035146622148896251, 8.583431658899147152176436076553, 9.167463245464428125928007110175, 9.896894457728376330072746764906, 10.89411070477430215124694891341