L(s) = 1 | + (−0.930 + 0.474i)2-s + (−2.78 − 0.440i)3-s + (−0.533 + 0.734i)4-s + (−1.77 + 1.35i)5-s + (2.79 − 0.909i)6-s + (0.0860 + 0.543i)7-s + (0.475 − 3.00i)8-s + (4.68 + 1.52i)9-s + (1.01 − 2.10i)10-s + (−3.29 − 0.335i)11-s + (1.80 − 1.80i)12-s + (1.47 + 2.89i)13-s + (−0.337 − 0.464i)14-s + (5.54 − 2.99i)15-s + (0.419 + 1.29i)16-s + (−2.57 + 5.04i)17-s + ⋯ |
L(s) = 1 | + (−0.658 + 0.335i)2-s + (−1.60 − 0.254i)3-s + (−0.266 + 0.367i)4-s + (−0.794 + 0.607i)5-s + (1.14 − 0.371i)6-s + (0.0325 + 0.205i)7-s + (0.168 − 1.06i)8-s + (1.56 + 0.507i)9-s + (0.319 − 0.666i)10-s + (−0.994 − 0.101i)11-s + (0.522 − 0.522i)12-s + (0.408 + 0.801i)13-s + (−0.0902 − 0.124i)14-s + (1.43 − 0.772i)15-s + (0.104 + 0.322i)16-s + (−0.623 + 1.22i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(−0.943−0.332i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(−0.943−0.332i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
−0.943−0.332i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), −0.943−0.332i)
|
Particular Values
L(1) |
≈ |
0.0285894+0.167267i |
L(21) |
≈ |
0.0285894+0.167267i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.77−1.35i)T |
| 11 | 1+(3.29+0.335i)T |
good | 2 | 1+(0.930−0.474i)T+(1.17−1.61i)T2 |
| 3 | 1+(2.78+0.440i)T+(2.85+0.927i)T2 |
| 7 | 1+(−0.0860−0.543i)T+(−6.65+2.16i)T2 |
| 13 | 1+(−1.47−2.89i)T+(−7.64+10.5i)T2 |
| 17 | 1+(2.57−5.04i)T+(−9.99−13.7i)T2 |
| 19 | 1+(1.25−0.914i)T+(5.87−18.0i)T2 |
| 23 | 1+(0.803+0.803i)T+23iT2 |
| 29 | 1+(3.44+2.50i)T+(8.96+27.5i)T2 |
| 31 | 1+(0.509−1.56i)T+(−25.0−18.2i)T2 |
| 37 | 1+(0.945−0.149i)T+(35.1−11.4i)T2 |
| 41 | 1+(−5.25−7.23i)T+(−12.6+38.9i)T2 |
| 43 | 1+(2.55−2.55i)T−43iT2 |
| 47 | 1+(−0.636+4.02i)T+(−44.6−14.5i)T2 |
| 53 | 1+(−6.27+3.19i)T+(31.1−42.8i)T2 |
| 59 | 1+(3.97−5.47i)T+(−18.2−56.1i)T2 |
| 61 | 1+(8.75−2.84i)T+(49.3−35.8i)T2 |
| 67 | 1+(2.62−2.62i)T−67iT2 |
| 71 | 1+(−2.11−6.51i)T+(−57.4+41.7i)T2 |
| 73 | 1+(9.96−1.57i)T+(69.4−22.5i)T2 |
| 79 | 1+(1.28−3.96i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−10.0−5.14i)T+(48.7+67.1i)T2 |
| 89 | 1−3.64iT−89T2 |
| 97 | 1+(7.56+14.8i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.20471740163066784494657306267, −15.21797524310911927942871349716, −13.23307867828626182446021915100, −12.25507812335793588808470534594, −11.19863289618888295913599438237, −10.30110651472893731285097129196, −8.447443235788767794372595750528, −7.23561140345853878943753894305, −6.13509483799179468359776873078, −4.25292693244045137084668134555,
0.37956536279088003648223298822, 4.68785534900789650180266309511, 5.60466936869180153713933009571, 7.56910618015951795584251758372, 9.107038245809173783026941094478, 10.53375170135071189292352337481, 11.08057689761349923192981339155, 12.18804476476780131690585776008, 13.40043347342704795004521847531, 15.35243268677487568655446903069