L(s) = 1 | + (−0.513 + 0.261i)2-s + (0.760 + 0.120i)3-s + (−0.980 + 1.34i)4-s + (2.23 + 0.0653i)5-s + (−0.421 + 0.136i)6-s + (−0.186 − 1.17i)7-s + (0.330 − 2.08i)8-s + (−2.28 − 0.743i)9-s + (−1.16 + 0.550i)10-s + (−0.502 + 3.27i)11-s + (−0.908 + 0.908i)12-s + (−2.75 − 5.41i)13-s + (0.403 + 0.555i)14-s + (1.69 + 0.318i)15-s + (−0.655 − 2.01i)16-s + (0.168 − 0.330i)17-s + ⋯ |
L(s) = 1 | + (−0.362 + 0.184i)2-s + (0.438 + 0.0695i)3-s + (−0.490 + 0.674i)4-s + (0.999 + 0.0292i)5-s + (−0.172 + 0.0559i)6-s + (−0.0705 − 0.445i)7-s + (0.116 − 0.737i)8-s + (−0.763 − 0.247i)9-s + (−0.368 + 0.174i)10-s + (−0.151 + 0.988i)11-s + (−0.262 + 0.262i)12-s + (−0.765 − 1.50i)13-s + (0.107 + 0.148i)14-s + (0.436 + 0.0823i)15-s + (−0.163 − 0.504i)16-s + (0.0408 − 0.0801i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.877−0.479i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(0.877−0.479i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.877−0.479i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), 0.877−0.479i)
|
Particular Values
L(1) |
≈ |
0.767489+0.195867i |
L(21) |
≈ |
0.767489+0.195867i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.23−0.0653i)T |
| 11 | 1+(0.502−3.27i)T |
good | 2 | 1+(0.513−0.261i)T+(1.17−1.61i)T2 |
| 3 | 1+(−0.760−0.120i)T+(2.85+0.927i)T2 |
| 7 | 1+(0.186+1.17i)T+(−6.65+2.16i)T2 |
| 13 | 1+(2.75+5.41i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−0.168+0.330i)T+(−9.99−13.7i)T2 |
| 19 | 1+(1.11−0.809i)T+(5.87−18.0i)T2 |
| 23 | 1+(−3.48−3.48i)T+23iT2 |
| 29 | 1+(−4.95−3.60i)T+(8.96+27.5i)T2 |
| 31 | 1+(0.764−2.35i)T+(−25.0−18.2i)T2 |
| 37 | 1+(2.93−0.465i)T+(35.1−11.4i)T2 |
| 41 | 1+(3.60+4.95i)T+(−12.6+38.9i)T2 |
| 43 | 1+(6.75−6.75i)T−43iT2 |
| 47 | 1+(0.199−1.26i)T+(−44.6−14.5i)T2 |
| 53 | 1+(0.363−0.185i)T+(31.1−42.8i)T2 |
| 59 | 1+(0.110−0.151i)T+(−18.2−56.1i)T2 |
| 61 | 1+(0.649−0.211i)T+(49.3−35.8i)T2 |
| 67 | 1+(−7.14+7.14i)T−67iT2 |
| 71 | 1+(−0.319−0.983i)T+(−57.4+41.7i)T2 |
| 73 | 1+(4.51−0.715i)T+(69.4−22.5i)T2 |
| 79 | 1+(3.59−11.0i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−10.1−5.16i)T+(48.7+67.1i)T2 |
| 89 | 1+8.04iT−89T2 |
| 97 | 1+(3.83+7.52i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.33665710256822567967228509308, −14.25666724935322634046424420542, −13.21267599197319831998639991783, −12.35018312988895599195886852198, −10.35507176867738924062927099307, −9.484992858112086209732425645312, −8.310391446766748147252574655422, −7.06164199751535296062940296713, −5.14512056402110959283836608049, −3.06776956194270685861345794717,
2.33585851796872187937261904254, 5.07695155006679707522361662820, 6.33697028836350616658316391568, 8.574569381147008223696247611439, 9.192513447439731936749690187327, 10.38967898743068641538431323318, 11.63697805215827628259738498649, 13.40463427409499280812466599298, 14.08178260826312105661652051769, 14.86637735715550441357073181691