L(s) = 1 | + (−0.237 − 1.50i)2-s + (0.710 − 0.361i)3-s + (−0.295 + 0.0959i)4-s + (−1.71 + 1.43i)5-s + (−0.712 − 0.980i)6-s + (0.0869 − 0.170i)7-s + (−1.16 − 2.28i)8-s + (−1.38 + 1.91i)9-s + (2.56 + 2.23i)10-s + (1.77 + 2.80i)11-s + (−0.175 + 0.175i)12-s + (3.05 − 0.484i)13-s + (−0.276 − 0.0899i)14-s + (−0.698 + 1.63i)15-s + (−3.66 + 2.65i)16-s + (−3.66 − 0.579i)17-s + ⋯ |
L(s) = 1 | + (−0.168 − 1.06i)2-s + (0.410 − 0.208i)3-s + (−0.147 + 0.0479i)4-s + (−0.766 + 0.641i)5-s + (−0.290 − 0.400i)6-s + (0.0328 − 0.0644i)7-s + (−0.412 − 0.808i)8-s + (−0.463 + 0.637i)9-s + (0.810 + 0.706i)10-s + (0.535 + 0.844i)11-s + (−0.0505 + 0.0505i)12-s + (0.847 − 0.134i)13-s + (−0.0739 − 0.0240i)14-s + (−0.180 + 0.423i)15-s + (−0.915 + 0.664i)16-s + (−0.887 − 0.140i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.319+0.947i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(0.319+0.947i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.319+0.947i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(18,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), 0.319+0.947i)
|
Particular Values
L(1) |
≈ |
0.686378−0.493054i |
L(21) |
≈ |
0.686378−0.493054i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.71−1.43i)T |
| 11 | 1+(−1.77−2.80i)T |
good | 2 | 1+(0.237+1.50i)T+(−1.90+0.618i)T2 |
| 3 | 1+(−0.710+0.361i)T+(1.76−2.42i)T2 |
| 7 | 1+(−0.0869+0.170i)T+(−4.11−5.66i)T2 |
| 13 | 1+(−3.05+0.484i)T+(12.3−4.01i)T2 |
| 17 | 1+(3.66+0.579i)T+(16.1+5.25i)T2 |
| 19 | 1+(−0.229+0.707i)T+(−15.3−11.1i)T2 |
| 23 | 1+(1.14+1.14i)T+23iT2 |
| 29 | 1+(2.95+9.07i)T+(−23.4+17.0i)T2 |
| 31 | 1+(0.283+0.206i)T+(9.57+29.4i)T2 |
| 37 | 1+(4.81+2.45i)T+(21.7+29.9i)T2 |
| 41 | 1+(−6.36−2.06i)T+(33.1+24.0i)T2 |
| 43 | 1+(3.72−3.72i)T−43iT2 |
| 47 | 1+(−5.61−11.0i)T+(−27.6+38.0i)T2 |
| 53 | 1+(1.41+8.91i)T+(−50.4+16.3i)T2 |
| 59 | 1+(−9.15+2.97i)T+(47.7−34.6i)T2 |
| 61 | 1+(3.46+4.76i)T+(−18.8+58.0i)T2 |
| 67 | 1+(−4.13+4.13i)T−67iT2 |
| 71 | 1+(−9.27+6.73i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.14−1.09i)T+(42.9+59.0i)T2 |
| 79 | 1+(−0.542−0.394i)T+(24.4+75.1i)T2 |
| 83 | 1+(2.60−16.4i)T+(−78.9−25.6i)T2 |
| 89 | 1−7.92iT−89T2 |
| 97 | 1+(1.36−0.215i)T+(92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.09797627552240304524223808367, −13.85641317938197823534973907048, −12.61994507292337017696407819410, −11.41684266865311522881569135012, −10.83333663261056399294149800401, −9.412251293715021347171985683569, −7.945566117253026051992231013922, −6.58075031946221013134107698875, −3.98321059091092992012627531975, −2.40033684023239449929250978450,
3.68367733179799525995542556162, 5.66924853502106264560026071016, 7.01841093085232033338575205167, 8.661348894057334204091716597121, 8.768723831794898025084569732681, 11.13552817553577831567012186633, 12.06669704392461125776519582535, 13.68488695239633562581376148841, 14.79082013430984784238804762543, 15.64223678005457971085992101195