Properties

Label 2-55-55.18-c1-0-3
Degree $2$
Conductor $55$
Sign $0.319 + 0.947i$
Analytic cond. $0.439177$
Root an. cond. $0.662704$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.237 − 1.50i)2-s + (0.710 − 0.361i)3-s + (−0.295 + 0.0959i)4-s + (−1.71 + 1.43i)5-s + (−0.712 − 0.980i)6-s + (0.0869 − 0.170i)7-s + (−1.16 − 2.28i)8-s + (−1.38 + 1.91i)9-s + (2.56 + 2.23i)10-s + (1.77 + 2.80i)11-s + (−0.175 + 0.175i)12-s + (3.05 − 0.484i)13-s + (−0.276 − 0.0899i)14-s + (−0.698 + 1.63i)15-s + (−3.66 + 2.65i)16-s + (−3.66 − 0.579i)17-s + ⋯
L(s)  = 1  + (−0.168 − 1.06i)2-s + (0.410 − 0.208i)3-s + (−0.147 + 0.0479i)4-s + (−0.766 + 0.641i)5-s + (−0.290 − 0.400i)6-s + (0.0328 − 0.0644i)7-s + (−0.412 − 0.808i)8-s + (−0.463 + 0.637i)9-s + (0.810 + 0.706i)10-s + (0.535 + 0.844i)11-s + (−0.0505 + 0.0505i)12-s + (0.847 − 0.134i)13-s + (−0.0739 − 0.0240i)14-s + (−0.180 + 0.423i)15-s + (−0.915 + 0.664i)16-s + (−0.887 − 0.140i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.319 + 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.319 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $0.319 + 0.947i$
Analytic conductor: \(0.439177\)
Root analytic conductor: \(0.662704\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{55} (18, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :1/2),\ 0.319 + 0.947i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.686378 - 0.493054i\)
\(L(\frac12)\) \(\approx\) \(0.686378 - 0.493054i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.71 - 1.43i)T \)
11 \( 1 + (-1.77 - 2.80i)T \)
good2 \( 1 + (0.237 + 1.50i)T + (-1.90 + 0.618i)T^{2} \)
3 \( 1 + (-0.710 + 0.361i)T + (1.76 - 2.42i)T^{2} \)
7 \( 1 + (-0.0869 + 0.170i)T + (-4.11 - 5.66i)T^{2} \)
13 \( 1 + (-3.05 + 0.484i)T + (12.3 - 4.01i)T^{2} \)
17 \( 1 + (3.66 + 0.579i)T + (16.1 + 5.25i)T^{2} \)
19 \( 1 + (-0.229 + 0.707i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (1.14 + 1.14i)T + 23iT^{2} \)
29 \( 1 + (2.95 + 9.07i)T + (-23.4 + 17.0i)T^{2} \)
31 \( 1 + (0.283 + 0.206i)T + (9.57 + 29.4i)T^{2} \)
37 \( 1 + (4.81 + 2.45i)T + (21.7 + 29.9i)T^{2} \)
41 \( 1 + (-6.36 - 2.06i)T + (33.1 + 24.0i)T^{2} \)
43 \( 1 + (3.72 - 3.72i)T - 43iT^{2} \)
47 \( 1 + (-5.61 - 11.0i)T + (-27.6 + 38.0i)T^{2} \)
53 \( 1 + (1.41 + 8.91i)T + (-50.4 + 16.3i)T^{2} \)
59 \( 1 + (-9.15 + 2.97i)T + (47.7 - 34.6i)T^{2} \)
61 \( 1 + (3.46 + 4.76i)T + (-18.8 + 58.0i)T^{2} \)
67 \( 1 + (-4.13 + 4.13i)T - 67iT^{2} \)
71 \( 1 + (-9.27 + 6.73i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-2.14 - 1.09i)T + (42.9 + 59.0i)T^{2} \)
79 \( 1 + (-0.542 - 0.394i)T + (24.4 + 75.1i)T^{2} \)
83 \( 1 + (2.60 - 16.4i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 - 7.92iT - 89T^{2} \)
97 \( 1 + (1.36 - 0.215i)T + (92.2 - 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.09797627552240304524223808367, −13.85641317938197823534973907048, −12.61994507292337017696407819410, −11.41684266865311522881569135012, −10.83333663261056399294149800401, −9.412251293715021347171985683569, −7.945566117253026051992231013922, −6.58075031946221013134107698875, −3.98321059091092992012627531975, −2.40033684023239449929250978450, 3.68367733179799525995542556162, 5.66924853502106264560026071016, 7.01841093085232033338575205167, 8.661348894057334204091716597121, 8.768723831794898025084569732681, 11.13552817553577831567012186633, 12.06669704392461125776519582535, 13.68488695239633562581376148841, 14.79082013430984784238804762543, 15.64223678005457971085992101195

Graph of the $Z$-function along the critical line