L(s) = 1 | + (−0.261 − 0.513i)2-s + (0.120 − 0.760i)3-s + (0.980 − 1.34i)4-s + (−1.76 + 1.36i)5-s + (−0.421 + 0.136i)6-s + (1.17 − 0.186i)7-s + (−2.08 − 0.330i)8-s + (2.28 + 0.743i)9-s + (1.16 + 0.550i)10-s + (−0.502 + 3.27i)11-s + (−0.908 − 0.908i)12-s + (−5.41 + 2.75i)13-s + (−0.403 − 0.555i)14-s + (0.825 + 1.51i)15-s + (−0.655 − 2.01i)16-s + (0.330 + 0.168i)17-s + ⋯ |
L(s) = 1 | + (−0.184 − 0.362i)2-s + (0.0695 − 0.438i)3-s + (0.490 − 0.674i)4-s + (−0.791 + 0.611i)5-s + (−0.172 + 0.0559i)6-s + (0.445 − 0.0705i)7-s + (−0.737 − 0.116i)8-s + (0.763 + 0.247i)9-s + (0.368 + 0.174i)10-s + (−0.151 + 0.988i)11-s + (−0.262 − 0.262i)12-s + (−1.50 + 0.765i)13-s + (−0.107 − 0.148i)14-s + (0.213 + 0.389i)15-s + (−0.163 − 0.504i)16-s + (0.0801 + 0.0408i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.661+0.749i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(0.661+0.749i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.661+0.749i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), 0.661+0.749i)
|
Particular Values
L(1) |
≈ |
0.738277−0.333224i |
L(21) |
≈ |
0.738277−0.333224i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.76−1.36i)T |
| 11 | 1+(0.502−3.27i)T |
good | 2 | 1+(0.261+0.513i)T+(−1.17+1.61i)T2 |
| 3 | 1+(−0.120+0.760i)T+(−2.85−0.927i)T2 |
| 7 | 1+(−1.17+0.186i)T+(6.65−2.16i)T2 |
| 13 | 1+(5.41−2.75i)T+(7.64−10.5i)T2 |
| 17 | 1+(−0.330−0.168i)T+(9.99+13.7i)T2 |
| 19 | 1+(−1.11+0.809i)T+(5.87−18.0i)T2 |
| 23 | 1+(−3.48+3.48i)T−23iT2 |
| 29 | 1+(4.95+3.60i)T+(8.96+27.5i)T2 |
| 31 | 1+(0.764−2.35i)T+(−25.0−18.2i)T2 |
| 37 | 1+(0.465+2.93i)T+(−35.1+11.4i)T2 |
| 41 | 1+(3.60+4.95i)T+(−12.6+38.9i)T2 |
| 43 | 1+(−6.75−6.75i)T+43iT2 |
| 47 | 1+(1.26+0.199i)T+(44.6+14.5i)T2 |
| 53 | 1+(−0.185−0.363i)T+(−31.1+42.8i)T2 |
| 59 | 1+(−0.110+0.151i)T+(−18.2−56.1i)T2 |
| 61 | 1+(0.649−0.211i)T+(49.3−35.8i)T2 |
| 67 | 1+(−7.14−7.14i)T+67iT2 |
| 71 | 1+(−0.319−0.983i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−0.715−4.51i)T+(−69.4+22.5i)T2 |
| 79 | 1+(−3.59+11.0i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−5.16+10.1i)T+(−48.7−67.1i)T2 |
| 89 | 1−8.04iT−89T2 |
| 97 | 1+(−7.52+3.83i)T+(57.0−78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.00597945975132628554837847930, −14.40296267572224139518533038774, −12.60226283157882052521678759037, −11.72375437909449330904455988577, −10.61283937000209686574001720657, −9.575765427438229473013973658590, −7.53483875237760741378546355654, −6.87470734013728367665563832871, −4.68686299969765933047277472462, −2.23701452163949610681131906161,
3.45552171887150784266093300837, 5.15726334648729579152720252335, 7.25032399552082226870441340822, 8.107058564439821617868113746097, 9.381735464886320909418381026164, 11.02380155404627652560807891873, 12.09851512397631091060124262723, 12.99352743719574080358343410173, 14.88101611477977938100491300300, 15.55196528483753144229930700224