Properties

Label 2-55-55.28-c1-0-2
Degree $2$
Conductor $55$
Sign $0.995 + 0.0917i$
Analytic cond. $0.439177$
Root an. cond. $0.662704$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.474 + 0.930i)2-s + (−0.440 − 2.78i)3-s + (0.533 + 0.734i)4-s + (2.23 − 0.0540i)5-s + (2.79 + 0.909i)6-s + (−0.543 − 0.0860i)7-s + (−3.00 + 0.475i)8-s + (−4.68 + 1.52i)9-s + (−1.01 + 2.10i)10-s + (−3.29 + 0.335i)11-s + (1.80 − 1.80i)12-s + (2.89 + 1.47i)13-s + (0.337 − 0.464i)14-s + (−1.13 − 6.19i)15-s + (0.419 − 1.29i)16-s + (−5.04 + 2.57i)17-s + ⋯
L(s)  = 1  + (−0.335 + 0.658i)2-s + (−0.254 − 1.60i)3-s + (0.266 + 0.367i)4-s + (0.999 − 0.0241i)5-s + (1.14 + 0.371i)6-s + (−0.205 − 0.0325i)7-s + (−1.06 + 0.168i)8-s + (−1.56 + 0.507i)9-s + (−0.319 + 0.666i)10-s + (−0.994 + 0.101i)11-s + (0.522 − 0.522i)12-s + (0.801 + 0.408i)13-s + (0.0902 − 0.124i)14-s + (−0.293 − 1.59i)15-s + (0.104 − 0.322i)16-s + (−1.22 + 0.623i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0917i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $0.995 + 0.0917i$
Analytic conductor: \(0.439177\)
Root analytic conductor: \(0.662704\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{55} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :1/2),\ 0.995 + 0.0917i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.769382 - 0.0353856i\)
\(L(\frac12)\) \(\approx\) \(0.769382 - 0.0353856i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-2.23 + 0.0540i)T \)
11 \( 1 + (3.29 - 0.335i)T \)
good2 \( 1 + (0.474 - 0.930i)T + (-1.17 - 1.61i)T^{2} \)
3 \( 1 + (0.440 + 2.78i)T + (-2.85 + 0.927i)T^{2} \)
7 \( 1 + (0.543 + 0.0860i)T + (6.65 + 2.16i)T^{2} \)
13 \( 1 + (-2.89 - 1.47i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (5.04 - 2.57i)T + (9.99 - 13.7i)T^{2} \)
19 \( 1 + (-1.25 - 0.914i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (0.803 + 0.803i)T + 23iT^{2} \)
29 \( 1 + (-3.44 + 2.50i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (0.509 + 1.56i)T + (-25.0 + 18.2i)T^{2} \)
37 \( 1 + (0.149 - 0.945i)T + (-35.1 - 11.4i)T^{2} \)
41 \( 1 + (-5.25 + 7.23i)T + (-12.6 - 38.9i)T^{2} \)
43 \( 1 + (-2.55 + 2.55i)T - 43iT^{2} \)
47 \( 1 + (-4.02 + 0.636i)T + (44.6 - 14.5i)T^{2} \)
53 \( 1 + (3.19 - 6.27i)T + (-31.1 - 42.8i)T^{2} \)
59 \( 1 + (-3.97 - 5.47i)T + (-18.2 + 56.1i)T^{2} \)
61 \( 1 + (8.75 + 2.84i)T + (49.3 + 35.8i)T^{2} \)
67 \( 1 + (2.62 - 2.62i)T - 67iT^{2} \)
71 \( 1 + (-2.11 + 6.51i)T + (-57.4 - 41.7i)T^{2} \)
73 \( 1 + (-1.57 + 9.96i)T + (-69.4 - 22.5i)T^{2} \)
79 \( 1 + (-1.28 - 3.96i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (-5.14 - 10.0i)T + (-48.7 + 67.1i)T^{2} \)
89 \( 1 - 3.64iT - 89T^{2} \)
97 \( 1 + (-14.8 - 7.56i)T + (57.0 + 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.51754999881598381413867315642, −13.87455343802352467968095923407, −13.11349212285347358121412436226, −12.23867769931468976673391616349, −10.83980658820952966517355792890, −8.923872544738054384216099954414, −7.80962763772320751283150377086, −6.64131331392991508178295589584, −5.91964563116307206628612997750, −2.30201715349521540754721535038, 2.90621412093884840572391895095, 5.03398526570061603130591842774, 6.18452953024848744760122570952, 8.926292763870742986135841980245, 9.776804341246773447516730564630, 10.61413970828910872431206934616, 11.25440439795185372817309568595, 13.06871289874405598854395185784, 14.43294072849954603034576975303, 15.68791991476255340378338810510

Graph of the $Z$-function along the critical line