L(s) = 1 | − 1.46i·2-s + 0.114·3-s + 1.86·4-s + 2.23·5-s − 0.167i·6-s − 4.56i·7-s − 8.56i·8-s − 8.98·9-s − 3.26i·10-s + (5.89 + 9.28i)11-s + 0.213·12-s + 16.5i·13-s − 6.66·14-s + 0.256·15-s − 5.05·16-s − 17.2i·17-s + ⋯ |
L(s) = 1 | − 0.730i·2-s + 0.0381·3-s + 0.466·4-s + 0.447·5-s − 0.0278i·6-s − 0.651i·7-s − 1.07i·8-s − 0.998·9-s − 0.326i·10-s + (0.535 + 0.844i)11-s + 0.0178·12-s + 1.27i·13-s − 0.475·14-s + 0.0170·15-s − 0.316·16-s − 1.01i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.535 + 0.844i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.535 + 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.17395 - 0.645527i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17395 - 0.645527i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - 2.23T \) |
| 11 | \( 1 + (-5.89 - 9.28i)T \) |
good | 2 | \( 1 + 1.46iT - 4T^{2} \) |
| 3 | \( 1 - 0.114T + 9T^{2} \) |
| 7 | \( 1 + 4.56iT - 49T^{2} \) |
| 13 | \( 1 - 16.5iT - 169T^{2} \) |
| 17 | \( 1 + 17.2iT - 289T^{2} \) |
| 19 | \( 1 - 35.8iT - 361T^{2} \) |
| 23 | \( 1 + 29.3T + 529T^{2} \) |
| 29 | \( 1 + 8.51iT - 841T^{2} \) |
| 31 | \( 1 + 26.3T + 961T^{2} \) |
| 37 | \( 1 - 44.4T + 1.36e3T^{2} \) |
| 41 | \( 1 + 52.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 6.77iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 15.0T + 2.20e3T^{2} \) |
| 53 | \( 1 + 33.1T + 2.80e3T^{2} \) |
| 59 | \( 1 - 51.5T + 3.48e3T^{2} \) |
| 61 | \( 1 + 23.1iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 113.T + 4.48e3T^{2} \) |
| 71 | \( 1 - 8.00T + 5.04e3T^{2} \) |
| 73 | \( 1 + 32.5iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 52.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 43.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 73.8T + 7.92e3T^{2} \) |
| 97 | \( 1 - 22.0T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.57000515499014124995599328951, −13.84579412680982573285077653821, −12.26338763133091248962446924422, −11.56688315435591868077543148778, −10.28596601990578832311633424353, −9.327769931827861834775259070508, −7.43969702475584404203980853587, −6.12679230052008586798972981634, −3.93831125514143753622104466982, −1.99565778490526600045696685395,
2.75584136954852601515315071505, 5.54713345154897930472551426192, 6.27908360837472805645640476979, 8.015837218665088524393195647623, 8.966561144628718457845937824634, 10.77666589082309009433420756659, 11.70402536067062103735555902640, 13.18446145816026083388920711875, 14.46523059179520259584166715042, 15.20109975396267457968008651279