L(s) = 1 | − 3.54i·2-s + 4.97i·3-s − 4.53·4-s + (2.19 − 10.9i)5-s + 17.6·6-s − 25.4i·7-s − 12.2i·8-s + 2.25·9-s + (−38.8 − 7.78i)10-s + 11·11-s − 22.5i·12-s + 80.0i·13-s − 90.0·14-s + (54.5 + 10.9i)15-s − 79.7·16-s − 59.1i·17-s + ⋯ |
L(s) = 1 | − 1.25i·2-s + 0.957i·3-s − 0.567·4-s + (0.196 − 0.980i)5-s + 1.19·6-s − 1.37i·7-s − 0.541i·8-s + 0.0836·9-s + (−1.22 − 0.246i)10-s + 0.301·11-s − 0.543i·12-s + 1.70i·13-s − 1.71·14-s + (0.938 + 0.188i)15-s − 1.24·16-s − 0.844i·17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(−0.196+0.980i)Λ(4−s)
Λ(s)=(=(55s/2ΓC(s+3/2)L(s)(−0.196+0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
−0.196+0.980i
|
Analytic conductor: |
3.24510 |
Root analytic conductor: |
1.80141 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(34,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :3/2), −0.196+0.980i)
|
Particular Values
L(2) |
≈ |
0.944251−1.15237i |
L(21) |
≈ |
0.944251−1.15237i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.19+10.9i)T |
| 11 | 1−11T |
good | 2 | 1+3.54iT−8T2 |
| 3 | 1−4.97iT−27T2 |
| 7 | 1+25.4iT−343T2 |
| 13 | 1−80.0iT−2.19e3T2 |
| 17 | 1+59.1iT−4.91e3T2 |
| 19 | 1−49.0T+6.85e3T2 |
| 23 | 1−147.iT−1.21e4T2 |
| 29 | 1−194.T+2.43e4T2 |
| 31 | 1+162.T+2.97e4T2 |
| 37 | 1−14.5iT−5.06e4T2 |
| 41 | 1−213.T+6.89e4T2 |
| 43 | 1−57.9iT−7.95e4T2 |
| 47 | 1−415.iT−1.03e5T2 |
| 53 | 1+453.iT−1.48e5T2 |
| 59 | 1−300.T+2.05e5T2 |
| 61 | 1−164.T+2.26e5T2 |
| 67 | 1−44.6iT−3.00e5T2 |
| 71 | 1+553.T+3.57e5T2 |
| 73 | 1+589.iT−3.89e5T2 |
| 79 | 1+356.T+4.93e5T2 |
| 83 | 1−1.13e3iT−5.71e5T2 |
| 89 | 1−963.T+7.04e5T2 |
| 97 | 1−172.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.10420166792883920709627908144, −13.27137685354397942329642879818, −11.91863963219621564106021756469, −11.01918024076974446322310146670, −9.760232003893692089045603103479, −9.321567604342897045589731961106, −7.10813584121527462013932960447, −4.64825197862189326414311462939, −3.82126084346972839481196400130, −1.30286162813950110678075769210,
2.51866876697626996885549066096, 5.63128293474074103981010727275, 6.44520629588537444998094133134, 7.58308121817611805411730405022, 8.586221766501351742048715103306, 10.43851077647007655091995682209, 11.97335522448937323731992315446, 13.01695306667889321629003822196, 14.38363767077700723136407811543, 15.12408045348956245948849067696