L(s) = 1 | − 3.54i·2-s + 4.97i·3-s − 4.53·4-s + (2.19 − 10.9i)5-s + 17.6·6-s − 25.4i·7-s − 12.2i·8-s + 2.25·9-s + (−38.8 − 7.78i)10-s + 11·11-s − 22.5i·12-s + 80.0i·13-s − 90.0·14-s + (54.5 + 10.9i)15-s − 79.7·16-s − 59.1i·17-s + ⋯ |
L(s) = 1 | − 1.25i·2-s + 0.957i·3-s − 0.567·4-s + (0.196 − 0.980i)5-s + 1.19·6-s − 1.37i·7-s − 0.541i·8-s + 0.0836·9-s + (−1.22 − 0.246i)10-s + 0.301·11-s − 0.543i·12-s + 1.70i·13-s − 1.71·14-s + (0.938 + 0.188i)15-s − 1.24·16-s − 0.844i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.196 + 0.980i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.196 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.944251 - 1.15237i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.944251 - 1.15237i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-2.19 + 10.9i)T \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 + 3.54iT - 8T^{2} \) |
| 3 | \( 1 - 4.97iT - 27T^{2} \) |
| 7 | \( 1 + 25.4iT - 343T^{2} \) |
| 13 | \( 1 - 80.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 59.1iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 49.0T + 6.85e3T^{2} \) |
| 23 | \( 1 - 147. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 194.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 162.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 14.5iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 213.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 57.9iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 415. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 453. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 300.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 164.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 44.6iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 553.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 589. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 356.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.13e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 963.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 172. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.10420166792883920709627908144, −13.27137685354397942329642879818, −11.91863963219621564106021756469, −11.01918024076974446322310146670, −9.760232003893692089045603103479, −9.321567604342897045589731961106, −7.10813584121527462013932960447, −4.64825197862189326414311462939, −3.82126084346972839481196400130, −1.30286162813950110678075769210,
2.51866876697626996885549066096, 5.63128293474074103981010727275, 6.44520629588537444998094133134, 7.58308121817611805411730405022, 8.586221766501351742048715103306, 10.43851077647007655091995682209, 11.97335522448937323731992315446, 13.01695306667889321629003822196, 14.38363767077700723136407811543, 15.12408045348956245948849067696