L(s) = 1 | − 0.245i·2-s + 2.52i·3-s + 7.93·4-s + (−6.68 + 8.96i)5-s + 0.621·6-s + 10.5i·7-s − 3.91i·8-s + 20.6·9-s + (2.20 + 1.64i)10-s + 11·11-s + 20.0i·12-s + 63.0i·13-s + 2.58·14-s + (−22.6 − 16.8i)15-s + 62.5·16-s − 133. i·17-s + ⋯ |
L(s) = 1 | − 0.0869i·2-s + 0.486i·3-s + 0.992·4-s + (−0.597 + 0.801i)5-s + 0.0422·6-s + 0.567i·7-s − 0.173i·8-s + 0.763·9-s + (0.0697 + 0.0519i)10-s + 0.301·11-s + 0.482i·12-s + 1.34i·13-s + 0.0492·14-s + (−0.389 − 0.290i)15-s + 0.977·16-s − 1.91i·17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.597−0.801i)Λ(4−s)
Λ(s)=(=(55s/2ΓC(s+3/2)L(s)(0.597−0.801i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.597−0.801i
|
Analytic conductor: |
3.24510 |
Root analytic conductor: |
1.80141 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(34,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :3/2), 0.597−0.801i)
|
Particular Values
L(2) |
≈ |
1.41583+0.710637i |
L(21) |
≈ |
1.41583+0.710637i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(6.68−8.96i)T |
| 11 | 1−11T |
good | 2 | 1+0.245iT−8T2 |
| 3 | 1−2.52iT−27T2 |
| 7 | 1−10.5iT−343T2 |
| 13 | 1−63.0iT−2.19e3T2 |
| 17 | 1+133.iT−4.91e3T2 |
| 19 | 1+76.1T+6.85e3T2 |
| 23 | 1+169.iT−1.21e4T2 |
| 29 | 1+202.T+2.43e4T2 |
| 31 | 1−191.T+2.97e4T2 |
| 37 | 1−21.5iT−5.06e4T2 |
| 41 | 1−305.T+6.89e4T2 |
| 43 | 1+285.iT−7.95e4T2 |
| 47 | 1−123.iT−1.03e5T2 |
| 53 | 1−480.iT−1.48e5T2 |
| 59 | 1+364.T+2.05e5T2 |
| 61 | 1−9.11T+2.26e5T2 |
| 67 | 1+568.iT−3.00e5T2 |
| 71 | 1+157.T+3.57e5T2 |
| 73 | 1−212.iT−3.89e5T2 |
| 79 | 1+792.T+4.93e5T2 |
| 83 | 1+587.iT−5.71e5T2 |
| 89 | 1+698.T+7.04e5T2 |
| 97 | 1−1.83e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.17170670624021418912404253981, −14.18280251066818275716459794749, −12.31136285392691955326083029534, −11.48104689896880138243527215911, −10.52539903083314285894660361750, −9.200085189964228357109866776729, −7.36455294690950415527808886130, −6.47966976713271647140241072471, −4.29534180238656807250389115103, −2.51496888048124476394422691739,
1.41068921700332330229546635928, 3.89167045678883275687492191662, 5.93538330656280125107810786661, 7.39717005479031148221783000671, 8.187263697860861615547186794245, 10.14329599760203456992339344367, 11.25759200325413225447026582266, 12.57937617922278048576404192599, 13.08025313502288710352283941419, 15.01514863537872588164457238477