L(s) = 1 | − 0.245i·2-s + 2.52i·3-s + 7.93·4-s + (−6.68 + 8.96i)5-s + 0.621·6-s + 10.5i·7-s − 3.91i·8-s + 20.6·9-s + (2.20 + 1.64i)10-s + 11·11-s + 20.0i·12-s + 63.0i·13-s + 2.58·14-s + (−22.6 − 16.8i)15-s + 62.5·16-s − 133. i·17-s + ⋯ |
L(s) = 1 | − 0.0869i·2-s + 0.486i·3-s + 0.992·4-s + (−0.597 + 0.801i)5-s + 0.0422·6-s + 0.567i·7-s − 0.173i·8-s + 0.763·9-s + (0.0697 + 0.0519i)10-s + 0.301·11-s + 0.482i·12-s + 1.34i·13-s + 0.0492·14-s + (−0.389 − 0.290i)15-s + 0.977·16-s − 1.91i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.597 - 0.801i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.597 - 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.41583 + 0.710637i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41583 + 0.710637i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (6.68 - 8.96i)T \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 + 0.245iT - 8T^{2} \) |
| 3 | \( 1 - 2.52iT - 27T^{2} \) |
| 7 | \( 1 - 10.5iT - 343T^{2} \) |
| 13 | \( 1 - 63.0iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 133. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 76.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + 169. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 202.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 191.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 21.5iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 305.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 285. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 123. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 480. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 364.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 9.11T + 2.26e5T^{2} \) |
| 67 | \( 1 + 568. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 157.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 212. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 792.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 587. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 698.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.83e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.17170670624021418912404253981, −14.18280251066818275716459794749, −12.31136285392691955326083029534, −11.48104689896880138243527215911, −10.52539903083314285894660361750, −9.200085189964228357109866776729, −7.36455294690950415527808886130, −6.47966976713271647140241072471, −4.29534180238656807250389115103, −2.51496888048124476394422691739,
1.41068921700332330229546635928, 3.89167045678883275687492191662, 5.93538330656280125107810786661, 7.39717005479031148221783000671, 8.187263697860861615547186794245, 10.14329599760203456992339344367, 11.25759200325413225447026582266, 12.57937617922278048576404192599, 13.08025313502288710352283941419, 15.01514863537872588164457238477