L(s) = 1 | + (−0.156 + 0.987i)2-s + (−2.86 − 1.45i)3-s + (−0.951 − 0.309i)4-s + (1.88 − 2.59i)6-s + (0.692 + 1.35i)7-s + (0.453 − 0.891i)8-s + (4.29 + 5.91i)9-s + (−2.70 + 1.91i)11-s + (2.27 + 2.27i)12-s + (−1.04 − 0.165i)13-s + (−1.44 + 0.471i)14-s + (0.809 + 0.587i)16-s + (2.19 − 0.347i)17-s + (−6.51 + 3.31i)18-s + (−1.91 − 5.89i)19-s + ⋯ |
L(s) = 1 | + (−0.110 + 0.698i)2-s + (−1.65 − 0.841i)3-s + (−0.475 − 0.154i)4-s + (0.770 − 1.06i)6-s + (0.261 + 0.513i)7-s + (0.160 − 0.315i)8-s + (1.43 + 1.97i)9-s + (−0.815 + 0.578i)11-s + (0.655 + 0.655i)12-s + (−0.289 − 0.0459i)13-s + (−0.387 + 0.125i)14-s + (0.202 + 0.146i)16-s + (0.532 − 0.0843i)17-s + (−1.53 + 0.782i)18-s + (−0.439 − 1.35i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.568 + 0.822i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.568 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.472159 - 0.247770i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.472159 - 0.247770i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.156 - 0.987i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (2.70 - 1.91i)T \) |
good | 3 | \( 1 + (2.86 + 1.45i)T + (1.76 + 2.42i)T^{2} \) |
| 7 | \( 1 + (-0.692 - 1.35i)T + (-4.11 + 5.66i)T^{2} \) |
| 13 | \( 1 + (1.04 + 0.165i)T + (12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (-2.19 + 0.347i)T + (16.1 - 5.25i)T^{2} \) |
| 19 | \( 1 + (1.91 + 5.89i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-3.05 + 3.05i)T - 23iT^{2} \) |
| 29 | \( 1 + (-1.39 + 4.30i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.32 + 1.69i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.24 - 0.631i)T + (21.7 - 29.9i)T^{2} \) |
| 41 | \( 1 + (-2.38 + 0.774i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (6.40 + 6.40i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.03 + 3.99i)T + (-27.6 - 38.0i)T^{2} \) |
| 53 | \( 1 + (0.594 - 3.75i)T + (-50.4 - 16.3i)T^{2} \) |
| 59 | \( 1 + (-4.27 - 1.38i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.48 + 4.79i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (5.40 + 5.40i)T + 67iT^{2} \) |
| 71 | \( 1 + (7.19 + 5.23i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-10.1 + 5.17i)T + (42.9 - 59.0i)T^{2} \) |
| 79 | \( 1 + (4.69 - 3.40i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.200 - 1.26i)T + (-78.9 + 25.6i)T^{2} \) |
| 89 | \( 1 + 10.5iT - 89T^{2} \) |
| 97 | \( 1 + (6.92 + 1.09i)T + (92.2 + 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71111200066158910704089888580, −9.983366987769231914223370041370, −8.648037579123344495804605874087, −7.60775323928613313186085906880, −6.96190852711155025746955514558, −6.12367837106725070632726034132, −5.19227317293486294358921569426, −4.69720482348279127004380132735, −2.24995317523736227293759851276, −0.47392733966921224581420842577,
1.14079428496128368764235087222, 3.33146406400879447505902248495, 4.37592607475896992128358148180, 5.24504009211110473549136970155, 5.99207349850656498794685808841, 7.25170011836935281093855677527, 8.426905060753745196655435710591, 9.728923492817438836433038286050, 10.27776280960866697252475220595, 10.88813549912848848968745449740