L(s) = 1 | + (−0.156 + 0.987i)2-s + (−2.86 − 1.45i)3-s + (−0.951 − 0.309i)4-s + (1.88 − 2.59i)6-s + (0.692 + 1.35i)7-s + (0.453 − 0.891i)8-s + (4.29 + 5.91i)9-s + (−2.70 + 1.91i)11-s + (2.27 + 2.27i)12-s + (−1.04 − 0.165i)13-s + (−1.44 + 0.471i)14-s + (0.809 + 0.587i)16-s + (2.19 − 0.347i)17-s + (−6.51 + 3.31i)18-s + (−1.91 − 5.89i)19-s + ⋯ |
L(s) = 1 | + (−0.110 + 0.698i)2-s + (−1.65 − 0.841i)3-s + (−0.475 − 0.154i)4-s + (0.770 − 1.06i)6-s + (0.261 + 0.513i)7-s + (0.160 − 0.315i)8-s + (1.43 + 1.97i)9-s + (−0.815 + 0.578i)11-s + (0.655 + 0.655i)12-s + (−0.289 − 0.0459i)13-s + (−0.387 + 0.125i)14-s + (0.202 + 0.146i)16-s + (0.532 − 0.0843i)17-s + (−1.53 + 0.782i)18-s + (−0.439 − 1.35i)19-s + ⋯ |
Λ(s)=(=(550s/2ΓC(s)L(s)(0.568+0.822i)Λ(2−s)
Λ(s)=(=(550s/2ΓC(s+1/2)L(s)(0.568+0.822i)Λ(1−s)
Degree: |
2 |
Conductor: |
550
= 2⋅52⋅11
|
Sign: |
0.568+0.822i
|
Analytic conductor: |
4.39177 |
Root analytic conductor: |
2.09565 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ550(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 550, ( :1/2), 0.568+0.822i)
|
Particular Values
L(1) |
≈ |
0.472159−0.247770i |
L(21) |
≈ |
0.472159−0.247770i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.156−0.987i)T |
| 5 | 1 |
| 11 | 1+(2.70−1.91i)T |
good | 3 | 1+(2.86+1.45i)T+(1.76+2.42i)T2 |
| 7 | 1+(−0.692−1.35i)T+(−4.11+5.66i)T2 |
| 13 | 1+(1.04+0.165i)T+(12.3+4.01i)T2 |
| 17 | 1+(−2.19+0.347i)T+(16.1−5.25i)T2 |
| 19 | 1+(1.91+5.89i)T+(−15.3+11.1i)T2 |
| 23 | 1+(−3.05+3.05i)T−23iT2 |
| 29 | 1+(−1.39+4.30i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−2.32+1.69i)T+(9.57−29.4i)T2 |
| 37 | 1+(1.24−0.631i)T+(21.7−29.9i)T2 |
| 41 | 1+(−2.38+0.774i)T+(33.1−24.0i)T2 |
| 43 | 1+(6.40+6.40i)T+43iT2 |
| 47 | 1+(−2.03+3.99i)T+(−27.6−38.0i)T2 |
| 53 | 1+(0.594−3.75i)T+(−50.4−16.3i)T2 |
| 59 | 1+(−4.27−1.38i)T+(47.7+34.6i)T2 |
| 61 | 1+(−3.48+4.79i)T+(−18.8−58.0i)T2 |
| 67 | 1+(5.40+5.40i)T+67iT2 |
| 71 | 1+(7.19+5.23i)T+(21.9+67.5i)T2 |
| 73 | 1+(−10.1+5.17i)T+(42.9−59.0i)T2 |
| 79 | 1+(4.69−3.40i)T+(24.4−75.1i)T2 |
| 83 | 1+(−0.200−1.26i)T+(−78.9+25.6i)T2 |
| 89 | 1+10.5iT−89T2 |
| 97 | 1+(6.92+1.09i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71111200066158910704089888580, −9.983366987769231914223370041370, −8.648037579123344495804605874087, −7.60775323928613313186085906880, −6.96190852711155025746955514558, −6.12367837106725070632726034132, −5.19227317293486294358921569426, −4.69720482348279127004380132735, −2.24995317523736227293759851276, −0.47392733966921224581420842577,
1.14079428496128368764235087222, 3.33146406400879447505902248495, 4.37592607475896992128358148180, 5.24504009211110473549136970155, 5.99207349850656498794685808841, 7.25170011836935281093855677527, 8.426905060753745196655435710591, 9.728923492817438836433038286050, 10.27776280960866697252475220595, 10.88813549912848848968745449740