Properties

Label 2-550-1.1-c5-0-29
Degree $2$
Conductor $550$
Sign $1$
Analytic cond. $88.2111$
Root an. cond. $9.39207$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 3-s + 16·4-s − 4·6-s + 166·7-s + 64·8-s − 242·9-s − 121·11-s − 16·12-s − 692·13-s + 664·14-s + 256·16-s + 738·17-s − 968·18-s + 1.42e3·19-s − 166·21-s − 484·22-s + 1.77e3·23-s − 64·24-s − 2.76e3·26-s + 485·27-s + 2.65e3·28-s − 2.06e3·29-s + 6.24e3·31-s + 1.02e3·32-s + 121·33-s + 2.95e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.0641·3-s + 1/2·4-s − 0.0453·6-s + 1.28·7-s + 0.353·8-s − 0.995·9-s − 0.301·11-s − 0.0320·12-s − 1.13·13-s + 0.905·14-s + 1/4·16-s + 0.619·17-s − 0.704·18-s + 0.904·19-s − 0.0821·21-s − 0.213·22-s + 0.701·23-s − 0.0226·24-s − 0.803·26-s + 0.128·27-s + 0.640·28-s − 0.455·29-s + 1.16·31-s + 0.176·32-s + 0.0193·33-s + 0.437·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(88.2111\)
Root analytic conductor: \(9.39207\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.731046951\)
\(L(\frac12)\) \(\approx\) \(3.731046951\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
5 \( 1 \)
11 \( 1 + p^{2} T \)
good3 \( 1 + T + p^{5} T^{2} \)
7 \( 1 - 166 T + p^{5} T^{2} \)
13 \( 1 + 692 T + p^{5} T^{2} \)
17 \( 1 - 738 T + p^{5} T^{2} \)
19 \( 1 - 1424 T + p^{5} T^{2} \)
23 \( 1 - 1779 T + p^{5} T^{2} \)
29 \( 1 + 2064 T + p^{5} T^{2} \)
31 \( 1 - 6245 T + p^{5} T^{2} \)
37 \( 1 - 14785 T + p^{5} T^{2} \)
41 \( 1 - 5304 T + p^{5} T^{2} \)
43 \( 1 + 17798 T + p^{5} T^{2} \)
47 \( 1 - 17184 T + p^{5} T^{2} \)
53 \( 1 - 30726 T + p^{5} T^{2} \)
59 \( 1 + 34989 T + p^{5} T^{2} \)
61 \( 1 + 45940 T + p^{5} T^{2} \)
67 \( 1 + 25343 T + p^{5} T^{2} \)
71 \( 1 - 13311 T + p^{5} T^{2} \)
73 \( 1 - 53260 T + p^{5} T^{2} \)
79 \( 1 - 77234 T + p^{5} T^{2} \)
83 \( 1 + 55014 T + p^{5} T^{2} \)
89 \( 1 - 125415 T + p^{5} T^{2} \)
97 \( 1 - 88807 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18486205571573001144578552174, −9.091048974704884358525046387742, −7.934444779330416257946216950292, −7.47640586989177705551622705709, −6.09115383407124629642224867023, −5.18654590582980070154820346850, −4.64104221004948157056163185344, −3.16377640370239447569317314717, −2.26328043286869344087498674374, −0.873869996874479234352790333521, 0.873869996874479234352790333521, 2.26328043286869344087498674374, 3.16377640370239447569317314717, 4.64104221004948157056163185344, 5.18654590582980070154820346850, 6.09115383407124629642224867023, 7.47640586989177705551622705709, 7.934444779330416257946216950292, 9.091048974704884358525046387742, 10.18486205571573001144578552174

Graph of the $Z$-function along the critical line