L(s) = 1 | + 4·2-s − 3-s + 16·4-s − 4·6-s + 166·7-s + 64·8-s − 242·9-s − 121·11-s − 16·12-s − 692·13-s + 664·14-s + 256·16-s + 738·17-s − 968·18-s + 1.42e3·19-s − 166·21-s − 484·22-s + 1.77e3·23-s − 64·24-s − 2.76e3·26-s + 485·27-s + 2.65e3·28-s − 2.06e3·29-s + 6.24e3·31-s + 1.02e3·32-s + 121·33-s + 2.95e3·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.0641·3-s + 1/2·4-s − 0.0453·6-s + 1.28·7-s + 0.353·8-s − 0.995·9-s − 0.301·11-s − 0.0320·12-s − 1.13·13-s + 0.905·14-s + 1/4·16-s + 0.619·17-s − 0.704·18-s + 0.904·19-s − 0.0821·21-s − 0.213·22-s + 0.701·23-s − 0.0226·24-s − 0.803·26-s + 0.128·27-s + 0.640·28-s − 0.455·29-s + 1.16·31-s + 0.176·32-s + 0.0193·33-s + 0.437·34-s + ⋯ |
Λ(s)=(=(550s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(550s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
3.731046951 |
L(21) |
≈ |
3.731046951 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 5 | 1 |
| 11 | 1+p2T |
good | 3 | 1+T+p5T2 |
| 7 | 1−166T+p5T2 |
| 13 | 1+692T+p5T2 |
| 17 | 1−738T+p5T2 |
| 19 | 1−1424T+p5T2 |
| 23 | 1−1779T+p5T2 |
| 29 | 1+2064T+p5T2 |
| 31 | 1−6245T+p5T2 |
| 37 | 1−14785T+p5T2 |
| 41 | 1−5304T+p5T2 |
| 43 | 1+17798T+p5T2 |
| 47 | 1−17184T+p5T2 |
| 53 | 1−30726T+p5T2 |
| 59 | 1+34989T+p5T2 |
| 61 | 1+45940T+p5T2 |
| 67 | 1+25343T+p5T2 |
| 71 | 1−13311T+p5T2 |
| 73 | 1−53260T+p5T2 |
| 79 | 1−77234T+p5T2 |
| 83 | 1+55014T+p5T2 |
| 89 | 1−125415T+p5T2 |
| 97 | 1−88807T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18486205571573001144578552174, −9.091048974704884358525046387742, −7.934444779330416257946216950292, −7.47640586989177705551622705709, −6.09115383407124629642224867023, −5.18654590582980070154820346850, −4.64104221004948157056163185344, −3.16377640370239447569317314717, −2.26328043286869344087498674374, −0.873869996874479234352790333521,
0.873869996874479234352790333521, 2.26328043286869344087498674374, 3.16377640370239447569317314717, 4.64104221004948157056163185344, 5.18654590582980070154820346850, 6.09115383407124629642224867023, 7.47640586989177705551622705709, 7.934444779330416257946216950292, 9.091048974704884358525046387742, 10.18486205571573001144578552174