L(s) = 1 | + (0.133 − 1.40i)2-s − i·3-s + (−1.96 − 0.376i)4-s + 2.81i·5-s + (−1.40 − 0.133i)6-s + 1.52·7-s + (−0.793 + 2.71i)8-s − 9-s + (3.96 + 0.377i)10-s + 5.55i·11-s + (−0.376 + 1.96i)12-s − 1.85i·13-s + (0.204 − 2.15i)14-s + 2.81·15-s + (3.71 + 1.48i)16-s + 5.32·17-s + ⋯ |
L(s) = 1 | + (0.0946 − 0.995i)2-s − 0.577i·3-s + (−0.982 − 0.188i)4-s + 1.26i·5-s + (−0.574 − 0.0546i)6-s + 0.578·7-s + (−0.280 + 0.959i)8-s − 0.333·9-s + (1.25 + 0.119i)10-s + 1.67i·11-s + (−0.108 + 0.567i)12-s − 0.514i·13-s + (0.0547 − 0.575i)14-s + 0.727·15-s + (0.929 + 0.370i)16-s + 1.29·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.959 + 0.280i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.959 + 0.280i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35802 - 0.194334i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35802 - 0.194334i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.133 + 1.40i)T \) |
| 3 | \( 1 + iT \) |
| 23 | \( 1 - T \) |
good | 5 | \( 1 - 2.81iT - 5T^{2} \) |
| 7 | \( 1 - 1.52T + 7T^{2} \) |
| 11 | \( 1 - 5.55iT - 11T^{2} \) |
| 13 | \( 1 + 1.85iT - 13T^{2} \) |
| 17 | \( 1 - 5.32T + 17T^{2} \) |
| 19 | \( 1 - 3.73iT - 19T^{2} \) |
| 29 | \( 1 - 0.0915iT - 29T^{2} \) |
| 31 | \( 1 + 5.72T + 31T^{2} \) |
| 37 | \( 1 + 4.54iT - 37T^{2} \) |
| 41 | \( 1 - 6.21T + 41T^{2} \) |
| 43 | \( 1 - 10.1iT - 43T^{2} \) |
| 47 | \( 1 - 5.98T + 47T^{2} \) |
| 53 | \( 1 + 6.56iT - 53T^{2} \) |
| 59 | \( 1 - 3.88iT - 59T^{2} \) |
| 61 | \( 1 - 7.32iT - 61T^{2} \) |
| 67 | \( 1 + 15.8iT - 67T^{2} \) |
| 71 | \( 1 + 11.1T + 71T^{2} \) |
| 73 | \( 1 + 0.668T + 73T^{2} \) |
| 79 | \( 1 - 8.30T + 79T^{2} \) |
| 83 | \( 1 - 1.52iT - 83T^{2} \) |
| 89 | \( 1 - 6.22T + 89T^{2} \) |
| 97 | \( 1 - 8.93T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72289688600822758929040429654, −10.15321297672199229137930513265, −9.283733782189270263975865211463, −7.83017656286928541780021938417, −7.44546514387299206623109716059, −6.09090928203334780541660184951, −5.02035112709787313693092392608, −3.72611981683768521670166926422, −2.63806844467327113311055867435, −1.59052966698578454412565905841,
0.867270595094514557535516408804, 3.40721570318424876485693636567, 4.48016911064177278761383194133, 5.31773479230242684593125158768, 5.91823677984193557161147877963, 7.35728982935419878668986486692, 8.389028515568925348863213922149, 8.807560769498729393505357952329, 9.550384919587653773488963561246, 10.77924728486757372646088730278