L(s) = 1 | + (0.238 − 1.39i)2-s + i·3-s + (−1.88 − 0.665i)4-s − 4.08i·5-s + (1.39 + 0.238i)6-s − 1.92·7-s + (−1.37 + 2.46i)8-s − 9-s + (−5.68 − 0.974i)10-s − 3.31i·11-s + (0.665 − 1.88i)12-s + 3.23i·13-s + (−0.459 + 2.68i)14-s + 4.08·15-s + (3.11 + 2.51i)16-s − 5.13·17-s + ⋯ |
L(s) = 1 | + (0.168 − 0.985i)2-s + 0.577i·3-s + (−0.942 − 0.332i)4-s − 1.82i·5-s + (0.569 + 0.0975i)6-s − 0.727·7-s + (−0.487 + 0.873i)8-s − 0.333·9-s + (−1.79 − 0.308i)10-s − 1.00i·11-s + (0.192 − 0.544i)12-s + 0.897i·13-s + (−0.122 + 0.717i)14-s + 1.05·15-s + (0.778 + 0.627i)16-s − 1.24·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.873 - 0.487i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.873 - 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.164534 + 0.632363i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.164534 + 0.632363i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.238 + 1.39i)T \) |
| 3 | \( 1 - iT \) |
| 23 | \( 1 - T \) |
good | 5 | \( 1 + 4.08iT - 5T^{2} \) |
| 7 | \( 1 + 1.92T + 7T^{2} \) |
| 11 | \( 1 + 3.31iT - 11T^{2} \) |
| 13 | \( 1 - 3.23iT - 13T^{2} \) |
| 17 | \( 1 + 5.13T + 17T^{2} \) |
| 19 | \( 1 - 5.11iT - 19T^{2} \) |
| 29 | \( 1 + 7.41iT - 29T^{2} \) |
| 31 | \( 1 + 1.83T + 31T^{2} \) |
| 37 | \( 1 + 7.80iT - 37T^{2} \) |
| 41 | \( 1 + 11.9T + 41T^{2} \) |
| 43 | \( 1 + 2.04iT - 43T^{2} \) |
| 47 | \( 1 - 10.9T + 47T^{2} \) |
| 53 | \( 1 + 3.69iT - 53T^{2} \) |
| 59 | \( 1 - 10.0iT - 59T^{2} \) |
| 61 | \( 1 + 3.89iT - 61T^{2} \) |
| 67 | \( 1 + 11.4iT - 67T^{2} \) |
| 71 | \( 1 - 1.12T + 71T^{2} \) |
| 73 | \( 1 - 12.8T + 73T^{2} \) |
| 79 | \( 1 - 3.52T + 79T^{2} \) |
| 83 | \( 1 + 10.1iT - 83T^{2} \) |
| 89 | \( 1 + 5.70T + 89T^{2} \) |
| 97 | \( 1 - 0.894T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21512002978586616458874751354, −9.296855946292963912897156406123, −8.931595927504299742810720774008, −8.146177553823686704403589274660, −6.16343444984359407550223350748, −5.32060898977202171840081581409, −4.32221120385564655805048042435, −3.67101770089546097613819392679, −1.96589531563786065501509003921, −0.34341619904447280788475888307,
2.60306886520733550113560155301, 3.49397402311085507614880379731, 4.98240341852703938899659068229, 6.25423691569315101370489275172, 6.96884373912237314241904583089, 7.14731709932489901996885629113, 8.391702765579931327770311998112, 9.502465898237768876557876292015, 10.34396706686054554588693916290, 11.19860892785867241125863164324