Properties

Label 2-5520-1.1-c1-0-27
Degree $2$
Conductor $5520$
Sign $1$
Analytic cond. $44.0774$
Root an. cond. $6.63908$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 1.82·7-s + 9-s + 1.41·11-s + 0.585·13-s + 15-s − 2.41·17-s + 7.41·19-s − 1.82·21-s + 23-s + 25-s + 27-s − 3.58·29-s + 31-s + 1.41·33-s − 1.82·35-s − 7.48·37-s + 0.585·39-s + 7.24·41-s + 7.65·43-s + 45-s + 6.24·47-s − 3.65·49-s − 2.41·51-s + 5.24·53-s + 1.41·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.691·7-s + 0.333·9-s + 0.426·11-s + 0.162·13-s + 0.258·15-s − 0.585·17-s + 1.70·19-s − 0.398·21-s + 0.208·23-s + 0.200·25-s + 0.192·27-s − 0.665·29-s + 0.179·31-s + 0.246·33-s − 0.309·35-s − 1.23·37-s + 0.0938·39-s + 1.13·41-s + 1.16·43-s + 0.149·45-s + 0.910·47-s − 0.522·49-s − 0.338·51-s + 0.720·53-s + 0.190·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5520\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(44.0774\)
Root analytic conductor: \(6.63908\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.683317285\)
\(L(\frac12)\) \(\approx\) \(2.683317285\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
23 \( 1 - T \)
good7 \( 1 + 1.82T + 7T^{2} \)
11 \( 1 - 1.41T + 11T^{2} \)
13 \( 1 - 0.585T + 13T^{2} \)
17 \( 1 + 2.41T + 17T^{2} \)
19 \( 1 - 7.41T + 19T^{2} \)
29 \( 1 + 3.58T + 29T^{2} \)
31 \( 1 - T + 31T^{2} \)
37 \( 1 + 7.48T + 37T^{2} \)
41 \( 1 - 7.24T + 41T^{2} \)
43 \( 1 - 7.65T + 43T^{2} \)
47 \( 1 - 6.24T + 47T^{2} \)
53 \( 1 - 5.24T + 53T^{2} \)
59 \( 1 + 13.7T + 59T^{2} \)
61 \( 1 - 1.41T + 61T^{2} \)
67 \( 1 - 15.4T + 67T^{2} \)
71 \( 1 - 14.0T + 71T^{2} \)
73 \( 1 - 2.24T + 73T^{2} \)
79 \( 1 + 16.9T + 79T^{2} \)
83 \( 1 + 2.75T + 83T^{2} \)
89 \( 1 + 9.17T + 89T^{2} \)
97 \( 1 - 18.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.200634669438440961362893289719, −7.32305860495308234001708396771, −6.88612180177375309388738360845, −5.98624564788377199296581047810, −5.37403304571273071400979093884, −4.36869993005737002778636514323, −3.54957268188513932688014032935, −2.88736651361336046669144505115, −1.95723560914404829761241243371, −0.871214173717780393700615575167, 0.871214173717780393700615575167, 1.95723560914404829761241243371, 2.88736651361336046669144505115, 3.54957268188513932688014032935, 4.36869993005737002778636514323, 5.37403304571273071400979093884, 5.98624564788377199296581047810, 6.88612180177375309388738360845, 7.32305860495308234001708396771, 8.200634669438440961362893289719

Graph of the $Z$-function along the critical line