L(s) = 1 | + i·3-s − i·5-s − 3.67·7-s − 9-s + 1.00·11-s − 0.593·13-s + 15-s − 5.94i·17-s − 0.286·19-s − 3.67i·21-s + (2.84 + 3.85i)23-s − 25-s − i·27-s − 6.36·29-s − 1.69i·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.447i·5-s − 1.38·7-s − 0.333·9-s + 0.303·11-s − 0.164·13-s + 0.258·15-s − 1.44i·17-s − 0.0656·19-s − 0.801i·21-s + (0.594 + 0.804i)23-s − 0.200·25-s − 0.192i·27-s − 1.18·29-s − 0.304i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.399 - 0.916i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.399 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.070839742\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.070839742\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + iT \) |
| 23 | \( 1 + (-2.84 - 3.85i)T \) |
good | 7 | \( 1 + 3.67T + 7T^{2} \) |
| 11 | \( 1 - 1.00T + 11T^{2} \) |
| 13 | \( 1 + 0.593T + 13T^{2} \) |
| 17 | \( 1 + 5.94iT - 17T^{2} \) |
| 19 | \( 1 + 0.286T + 19T^{2} \) |
| 29 | \( 1 + 6.36T + 29T^{2} \) |
| 31 | \( 1 + 1.69iT - 31T^{2} \) |
| 37 | \( 1 - 10.8iT - 37T^{2} \) |
| 41 | \( 1 + 9.08T + 41T^{2} \) |
| 43 | \( 1 - 2.53T + 43T^{2} \) |
| 47 | \( 1 - 9.21iT - 47T^{2} \) |
| 53 | \( 1 + 9.48iT - 53T^{2} \) |
| 59 | \( 1 + 7.46iT - 59T^{2} \) |
| 61 | \( 1 + 10.2iT - 61T^{2} \) |
| 67 | \( 1 - 6.43T + 67T^{2} \) |
| 71 | \( 1 + 2.38iT - 71T^{2} \) |
| 73 | \( 1 - 10.8T + 73T^{2} \) |
| 79 | \( 1 - 13.4T + 79T^{2} \) |
| 83 | \( 1 - 1.86T + 83T^{2} \) |
| 89 | \( 1 - 14.2iT - 89T^{2} \) |
| 97 | \( 1 + 0.822iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.375700172610754343584741269593, −7.55924571904113809974603394968, −6.73896932940025509055946587422, −6.23002308432979771631760783777, −5.17173278453928669589850532614, −4.83690212782235742172608861124, −3.55674847011634575485160445613, −3.31792933505568317034005423216, −2.17968682486758955809339032441, −0.74088826228804624397200708355,
0.39125992195438055677969713629, 1.77409825943784783741617551706, 2.63824479501574833084258709684, 3.52810297550396751538070575731, 4.05381042874993973059502744155, 5.39272705775613297366244476785, 6.04467486518770988174102457089, 6.65071531945293373150023986725, 7.13733346961646591650124012381, 7.904808099441652479441804683399