L(s) = 1 | + (−2.70 − 0.819i)2-s + (−8.54 + 4.93i)3-s + (6.65 + 4.43i)4-s + (3.19 + 1.84i)5-s + (27.1 − 6.35i)6-s + (−18.3 − 2.28i)7-s + (−14.3 − 17.4i)8-s + (35.2 − 60.9i)9-s + (−7.13 − 7.61i)10-s + (28.5 − 16.4i)11-s + (−78.8 − 5.07i)12-s − 33.0i·13-s + (47.8 + 21.2i)14-s − 36.4·15-s + (24.6 + 59.0i)16-s + (26.6 + 46.2i)17-s + ⋯ |
L(s) = 1 | + (−0.957 − 0.289i)2-s + (−1.64 + 0.949i)3-s + (0.832 + 0.554i)4-s + (0.285 + 0.165i)5-s + (1.84 − 0.432i)6-s + (−0.992 − 0.123i)7-s + (−0.635 − 0.771i)8-s + (1.30 − 2.25i)9-s + (−0.225 − 0.240i)10-s + (0.782 − 0.451i)11-s + (−1.89 − 0.122i)12-s − 0.704i·13-s + (0.913 + 0.405i)14-s − 0.626·15-s + (0.384 + 0.922i)16-s + (0.380 + 0.659i)17-s + ⋯ |
Λ(s)=(=(56s/2ΓC(s)L(s)(0.104+0.994i)Λ(4−s)
Λ(s)=(=(56s/2ΓC(s+3/2)L(s)(0.104+0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
56
= 23⋅7
|
Sign: |
0.104+0.994i
|
Analytic conductor: |
3.30410 |
Root analytic conductor: |
1.81772 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ56(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 56, ( :3/2), 0.104+0.994i)
|
Particular Values
L(2) |
≈ |
0.225427−0.202932i |
L(21) |
≈ |
0.225427−0.202932i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.70+0.819i)T |
| 7 | 1+(18.3+2.28i)T |
good | 3 | 1+(8.54−4.93i)T+(13.5−23.3i)T2 |
| 5 | 1+(−3.19−1.84i)T+(62.5+108.i)T2 |
| 11 | 1+(−28.5+16.4i)T+(665.5−1.15e3i)T2 |
| 13 | 1+33.0iT−2.19e3T2 |
| 17 | 1+(−26.6−46.2i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(44.3+25.6i)T+(3.42e3+5.94e3i)T2 |
| 23 | 1+(−53.8+93.3i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1−7.61iT−2.43e4T2 |
| 31 | 1+(70.9+122.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(326.+188.i)T+(2.53e4+4.38e4i)T2 |
| 41 | 1+123.T+6.89e4T2 |
| 43 | 1−35.6iT−7.95e4T2 |
| 47 | 1+(−106.+184.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−396.+228.i)T+(7.44e4−1.28e5i)T2 |
| 59 | 1+(−70.4+40.6i)T+(1.02e5−1.77e5i)T2 |
| 61 | 1+(438.+252.i)T+(1.13e5+1.96e5i)T2 |
| 67 | 1+(171.−99.1i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1+474.T+3.57e5T2 |
| 73 | 1+(−337.−585.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−489.+847.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+956.iT−5.71e5T2 |
| 89 | 1+(512.−888.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+76.6T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.09140601013311169466927089795, −12.77788623136702507932556961104, −11.88311383674327301356601243116, −10.66612665529434969505268178180, −10.16718746275267033133156545569, −9.005387494553308716318605085568, −6.74587838784679713707367878837, −5.89510383200841257996269875628, −3.74077915843195954610131636156, −0.37824750320952361832080947525,
1.48577639387637544214727698095, 5.44793151025188811760219005016, 6.56085163442995046761030365631, 7.26168642335604768049640589211, 9.246902270721017101429967509985, 10.39764493332172290854519147990, 11.65362746095655200304883608679, 12.33640137232006527026118662732, 13.68614519954669990020535760135, 15.55834110048096833227156421682