L(s) = 1 | + (2.53 + 1.25i)2-s + (−7.07 − 4.08i)3-s + (4.85 + 6.35i)4-s + (17.0 − 9.82i)5-s + (−12.8 − 19.2i)6-s + (15.6 − 9.83i)7-s + (4.34 + 22.2i)8-s + (19.9 + 34.4i)9-s + (55.4 − 3.57i)10-s + (−29.7 − 17.1i)11-s + (−8.39 − 64.8i)12-s − 3.09i·13-s + (52.1 − 5.26i)14-s − 160.·15-s + (−16.8 + 61.7i)16-s + (−14.8 + 25.6i)17-s + ⋯ |
L(s) = 1 | + (0.896 + 0.443i)2-s + (−1.36 − 0.786i)3-s + (0.607 + 0.794i)4-s + (1.52 − 0.879i)5-s + (−0.872 − 1.30i)6-s + (0.847 − 0.531i)7-s + (0.191 + 0.981i)8-s + (0.737 + 1.27i)9-s + (1.75 − 0.113i)10-s + (−0.814 − 0.470i)11-s + (−0.202 − 1.56i)12-s − 0.0661i·13-s + (0.994 − 0.100i)14-s − 2.76·15-s + (−0.262 + 0.964i)16-s + (−0.211 + 0.365i)17-s + ⋯ |
Λ(s)=(=(56s/2ΓC(s)L(s)(0.936+0.350i)Λ(4−s)
Λ(s)=(=(56s/2ΓC(s+3/2)L(s)(0.936+0.350i)Λ(1−s)
Degree: |
2 |
Conductor: |
56
= 23⋅7
|
Sign: |
0.936+0.350i
|
Analytic conductor: |
3.30410 |
Root analytic conductor: |
1.81772 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ56(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 56, ( :3/2), 0.936+0.350i)
|
Particular Values
L(2) |
≈ |
1.88937−0.341468i |
L(21) |
≈ |
1.88937−0.341468i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.53−1.25i)T |
| 7 | 1+(−15.6+9.83i)T |
good | 3 | 1+(7.07+4.08i)T+(13.5+23.3i)T2 |
| 5 | 1+(−17.0+9.82i)T+(62.5−108.i)T2 |
| 11 | 1+(29.7+17.1i)T+(665.5+1.15e3i)T2 |
| 13 | 1+3.09iT−2.19e3T2 |
| 17 | 1+(14.8−25.6i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(40.0−23.1i)T+(3.42e3−5.94e3i)T2 |
| 23 | 1+(−49.7−86.0i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1−136.iT−2.43e4T2 |
| 31 | 1+(0.290−0.502i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(128.−74.0i)T+(2.53e4−4.38e4i)T2 |
| 41 | 1+141.T+6.89e4T2 |
| 43 | 1−259.iT−7.95e4T2 |
| 47 | 1+(174.+301.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(184.+106.i)T+(7.44e4+1.28e5i)T2 |
| 59 | 1+(100.+57.9i)T+(1.02e5+1.77e5i)T2 |
| 61 | 1+(−345.+199.i)T+(1.13e5−1.96e5i)T2 |
| 67 | 1+(−893.−515.i)T+(1.50e5+2.60e5i)T2 |
| 71 | 1−476.T+3.57e5T2 |
| 73 | 1+(554.−960.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(225.+391.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+770.iT−5.71e5T2 |
| 89 | 1+(615.+1.06e3i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−706.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.33823025226148858139288701689, −13.22992477061628049643505786560, −12.86473471696076590446911418042, −11.52296595998513668940167547032, −10.47773950860523813929262868232, −8.311057036604191730516753763408, −6.78949071914508261647494819264, −5.61320224826642492280642668386, −5.00425526259837835091751741928, −1.62597726957999671798427521303,
2.31725461991407600992767223249, 4.80466372186571456559953868753, 5.61650252154704716553628556899, 6.65595958917547814699092960873, 9.650635631792153709694176667084, 10.58746922861339757268433832820, 11.15319685403056850462826234191, 12.43397460743115742269124528282, 13.71560686418139426657630261058, 14.81877921670701251769938842682