L(s) = 1 | + (0.133 + 2.23i)5-s + (1.73 + 2i)7-s + (−1.5 − 2.59i)9-s + (1.5 − 2.59i)11-s + 5i·13-s + (1.73 + i)17-s + (2.5 + 4.33i)19-s + (−6.06 + 3.5i)23-s + (−4.96 + 0.598i)25-s + 4·29-s + (−1 + 1.73i)31-s + (−4.23 + 4.13i)35-s + (0.866 − 0.5i)37-s + 3·41-s + 2i·43-s + ⋯ |
L(s) = 1 | + (0.0599 + 0.998i)5-s + (0.654 + 0.755i)7-s + (−0.5 − 0.866i)9-s + (0.452 − 0.783i)11-s + 1.38i·13-s + (0.420 + 0.242i)17-s + (0.573 + 0.993i)19-s + (−1.26 + 0.729i)23-s + (−0.992 + 0.119i)25-s + 0.742·29-s + (−0.179 + 0.311i)31-s + (−0.715 + 0.698i)35-s + (0.142 − 0.0821i)37-s + 0.468·41-s + 0.304i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.330 - 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.330 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20268 + 0.853082i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20268 + 0.853082i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.133 - 2.23i)T \) |
| 7 | \( 1 + (-1.73 - 2i)T \) |
good | 3 | \( 1 + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 - i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.5 - 4.33i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (6.06 - 3.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.866 + 0.5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 - 2iT - 43T^{2} \) |
| 47 | \( 1 + (-6.06 + 3.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.79 - 4.5i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3 + 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.73 - i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + (13.8 + 8i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7 + 12.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6iT - 83T^{2} \) |
| 89 | \( 1 + (-1 - 1.73i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.12084112947036548749192000816, −10.01659348280096301328209811637, −9.171719699090685490862772077543, −8.359623364672106616537035465382, −7.32627038122318878141957151154, −6.17563815887789357044969176875, −5.77046415430889980623262016103, −4.08641743454540912391561741134, −3.15130592821623598128012225223, −1.77292869520538079212190014310,
0.909388870489807595718687289013, 2.44087868296226965242062633353, 4.12106222277381466252963932499, 4.95366397005094649059406455067, 5.72574568996022039296566000170, 7.25400471037142305563566122526, 7.969902570913491715807062164465, 8.660404202337105468623010409114, 9.843912950169102158092732767051, 10.49213872839324174108449622629