Properties

Label 4-560e2-1.1-c1e2-0-29
Degree $4$
Conductor $313600$
Sign $1$
Analytic cond. $19.9954$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 5·9-s + 2·11-s − 8·19-s + 11·25-s + 2·29-s + 12·31-s − 20·41-s + 20·45-s − 49-s + 8·55-s + 12·59-s − 8·61-s + 32·71-s − 22·79-s + 16·81-s − 24·89-s − 32·95-s + 10·99-s + 30·109-s − 19·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 8·145-s + ⋯
L(s)  = 1  + 1.78·5-s + 5/3·9-s + 0.603·11-s − 1.83·19-s + 11/5·25-s + 0.371·29-s + 2.15·31-s − 3.12·41-s + 2.98·45-s − 1/7·49-s + 1.07·55-s + 1.56·59-s − 1.02·61-s + 3.79·71-s − 2.47·79-s + 16/9·81-s − 2.54·89-s − 3.28·95-s + 1.00·99-s + 2.87·109-s − 1.72·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.664·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(313600\)    =    \(2^{8} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(19.9954\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 313600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.113680750\)
\(L(\frac12)\) \(\approx\) \(3.113680750\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 167 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70862297995796741768319571732, −10.32784410326647406069158074081, −9.992745442488012655709516755189, −9.954249134104325285537059379053, −9.380649780749393558087793542342, −8.737230499483633929453071530797, −8.488373296767513634131314970621, −8.029992865074042590792878729040, −7.11430035209296563389491696045, −6.77948403971659315174237405257, −6.40964565176020716426072231885, −6.27082841114926909906127331834, −5.30679125202027908688252562844, −5.01305810317297161823904958957, −4.35998212917175502672056735713, −3.98222919459956599204784297958, −3.06333061034806352466887240392, −2.29131801132705061393555228957, −1.77123885835003897391704340656, −1.16571607928687842361802773531, 1.16571607928687842361802773531, 1.77123885835003897391704340656, 2.29131801132705061393555228957, 3.06333061034806352466887240392, 3.98222919459956599204784297958, 4.35998212917175502672056735713, 5.01305810317297161823904958957, 5.30679125202027908688252562844, 6.27082841114926909906127331834, 6.40964565176020716426072231885, 6.77948403971659315174237405257, 7.11430035209296563389491696045, 8.029992865074042590792878729040, 8.488373296767513634131314970621, 8.737230499483633929453071530797, 9.380649780749393558087793542342, 9.954249134104325285537059379053, 9.992745442488012655709516755189, 10.32784410326647406069158074081, 10.70862297995796741768319571732

Graph of the $Z$-function along the critical line