L(s) = 1 | + 4·5-s + 5·9-s + 2·11-s − 8·19-s + 11·25-s + 2·29-s + 12·31-s − 20·41-s + 20·45-s − 49-s + 8·55-s + 12·59-s − 8·61-s + 32·71-s − 22·79-s + 16·81-s − 24·89-s − 32·95-s + 10·99-s + 30·109-s − 19·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 8·145-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 5/3·9-s + 0.603·11-s − 1.83·19-s + 11/5·25-s + 0.371·29-s + 2.15·31-s − 3.12·41-s + 2.98·45-s − 1/7·49-s + 1.07·55-s + 1.56·59-s − 1.02·61-s + 3.79·71-s − 2.47·79-s + 16/9·81-s − 2.54·89-s − 3.28·95-s + 1.00·99-s + 2.87·109-s − 1.72·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.664·145-s + ⋯ |
Λ(s)=(=(313600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(313600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
313600
= 28⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
19.9954 |
Root analytic conductor: |
2.11462 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 313600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.113680750 |
L(21) |
≈ |
3.113680750 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−4T+pT2 |
| 7 | C2 | 1+T2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 11 | C2 | (1−T+pT2)2 |
| 13 | C22 | 1−25T2+p2T4 |
| 17 | C22 | 1−25T2+p2T4 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−42T2+p2T4 |
| 29 | C2 | (1−T+pT2)2 |
| 31 | C2 | (1−6T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+10T+pT2)2 |
| 43 | C2 | (1−pT2)2 |
| 47 | C22 | 1−13T2+p2T4 |
| 53 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 59 | C2 | (1−6T+pT2)2 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | C22 | 1−34T2+p2T4 |
| 71 | C2 | (1−16T+pT2)2 |
| 73 | C22 | 1−46T2+p2T4 |
| 79 | C2 | (1+11T+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1+12T+pT2)2 |
| 97 | C22 | 1+167T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70862297995796741768319571732, −10.32784410326647406069158074081, −9.992745442488012655709516755189, −9.954249134104325285537059379053, −9.380649780749393558087793542342, −8.737230499483633929453071530797, −8.488373296767513634131314970621, −8.029992865074042590792878729040, −7.11430035209296563389491696045, −6.77948403971659315174237405257, −6.40964565176020716426072231885, −6.27082841114926909906127331834, −5.30679125202027908688252562844, −5.01305810317297161823904958957, −4.35998212917175502672056735713, −3.98222919459956599204784297958, −3.06333061034806352466887240392, −2.29131801132705061393555228957, −1.77123885835003897391704340656, −1.16571607928687842361802773531,
1.16571607928687842361802773531, 1.77123885835003897391704340656, 2.29131801132705061393555228957, 3.06333061034806352466887240392, 3.98222919459956599204784297958, 4.35998212917175502672056735713, 5.01305810317297161823904958957, 5.30679125202027908688252562844, 6.27082841114926909906127331834, 6.40964565176020716426072231885, 6.77948403971659315174237405257, 7.11430035209296563389491696045, 8.029992865074042590792878729040, 8.488373296767513634131314970621, 8.737230499483633929453071530797, 9.380649780749393558087793542342, 9.954249134104325285537059379053, 9.992745442488012655709516755189, 10.32784410326647406069158074081, 10.70862297995796741768319571732