L(s) = 1 | + (−1.5 + 2.59i)3-s + (0.5 + 0.866i)5-s + (−0.5 − 2.59i)7-s + (−3 − 5.19i)9-s + (−1 + 1.73i)11-s − 6·13-s − 3·15-s + (−1 + 1.73i)17-s + (7.5 + 2.59i)21-s + (−4.5 − 7.79i)23-s + (−0.499 + 0.866i)25-s + 9·27-s + 3·29-s + (1 − 1.73i)31-s + (−3 − 5.19i)33-s + ⋯ |
L(s) = 1 | + (−0.866 + 1.49i)3-s + (0.223 + 0.387i)5-s + (−0.188 − 0.981i)7-s + (−1 − 1.73i)9-s + (−0.301 + 0.522i)11-s − 1.66·13-s − 0.774·15-s + (−0.242 + 0.420i)17-s + (1.63 + 0.566i)21-s + (−0.938 − 1.62i)23-s + (−0.0999 + 0.173i)25-s + 1.73·27-s + 0.557·29-s + (0.179 − 0.311i)31-s + (−0.522 − 0.904i)33-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)(−0.386+0.922i)Λ(2−s)
Λ(s)=(=(560s/2ΓC(s+1/2)L(s)(−0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
560
= 24⋅5⋅7
|
Sign: |
−0.386+0.922i
|
Analytic conductor: |
4.47162 |
Root analytic conductor: |
2.11462 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ560(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 560, ( :1/2), −0.386+0.922i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.5−0.866i)T |
| 7 | 1+(0.5+2.59i)T |
good | 3 | 1+(1.5−2.59i)T+(−1.5−2.59i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 13 | 1+6T+13T2 |
| 17 | 1+(1−1.73i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−9.5+16.4i)T2 |
| 23 | 1+(4.5+7.79i)T+(−11.5+19.9i)T2 |
| 29 | 1−3T+29T2 |
| 31 | 1+(−1+1.73i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4+6.92i)T+(−18.5+32.0i)T2 |
| 41 | 1−5T+41T2 |
| 43 | 1+T+43T2 |
| 47 | 1+(−4−6.92i)T+(−23.5+40.7i)T2 |
| 53 | 1+(2−3.46i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4−6.92i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.5+6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1.5−2.59i)T+(−33.5−58.0i)T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+(7−12.1i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2−3.46i)T+(−39.5+68.4i)T2 |
| 83 | 1−T+83T2 |
| 89 | 1+(6.5+11.2i)T+(−44.5+77.0i)T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32405943704433599832285826342, −10.03491122470901708091516793093, −9.135668869186383838277426400648, −7.69300552879846633339242529603, −6.71468216381318829784125468996, −5.73764375565985845850705092204, −4.58956822920757238304778436227, −4.17734235668272847511171272854, −2.67102895762323323698297291756, 0,
1.73440781798954448186915495075, 2.78382669842538044614324828656, 4.98578943868135646803071325141, 5.59833468637058787611191790817, 6.45656769547870055658996455581, 7.40348490250964578414996655636, 8.141731613205317063466886155332, 9.229950720918807290995336527717, 10.19928638796643000909459275249