L(s) = 1 | + (0.5 + 0.866i)3-s + (0.5 − 0.866i)5-s + (−2.5 − 0.866i)7-s + (1 − 1.73i)9-s + (3 + 5.19i)11-s + 2·13-s + 0.999·15-s + (3 + 5.19i)17-s + (4 − 6.92i)19-s + (−0.500 − 2.59i)21-s + (1.5 − 2.59i)23-s + (−0.499 − 0.866i)25-s + 5·27-s + 3·29-s + (1 + 1.73i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.223 − 0.387i)5-s + (−0.944 − 0.327i)7-s + (0.333 − 0.577i)9-s + (0.904 + 1.56i)11-s + 0.554·13-s + 0.258·15-s + (0.727 + 1.26i)17-s + (0.917 − 1.58i)19-s + (−0.109 − 0.566i)21-s + (0.312 − 0.541i)23-s + (−0.0999 − 0.173i)25-s + 0.962·27-s + 0.557·29-s + (0.179 + 0.311i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.68582 + 0.214830i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.68582 + 0.214830i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (2.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-3 - 5.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4 + 6.92i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3T + 29T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6 + 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 + 6.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-5 - 8.66i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2 - 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3T + 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46058670377058933316801826783, −9.786880525507366575165268719843, −9.301038899712288362920988552275, −8.363417278521026213757216681673, −6.88162324167860436496306637714, −6.55582359669875240872898298476, −4.99720724392104398638989585932, −4.07725842477931560750023000586, −3.15177141816932700949011503777, −1.32923166829179909689328365356,
1.27941598824344767311977059718, 2.94219701204365767507581915833, 3.63128004650993655204502494964, 5.45673934731770641113599573184, 6.17272885613011890655167590188, 7.12329146953734365226760007333, 8.021720856044280653995378443389, 8.998119376833668451673315465199, 9.786938663600683787192105588512, 10.68989361494849463274435359719