L(s) = 1 | + 11·3-s − 25·5-s − 49·7-s − 122·9-s + 267·11-s − 1.08e3·13-s − 275·15-s − 513·17-s + 802·19-s − 539·21-s + 1.29e3·23-s + 625·25-s − 4.01e3·27-s + 1.77e3·29-s + 2.58e3·31-s + 2.93e3·33-s + 1.22e3·35-s + 1.38e4·37-s − 1.19e4·39-s − 1.19e4·41-s + 598·43-s + 3.05e3·45-s + 1.70e4·47-s + 2.40e3·49-s − 5.64e3·51-s + 2.78e4·53-s − 6.67e3·55-s + ⋯ |
L(s) = 1 | + 0.705·3-s − 0.447·5-s − 0.377·7-s − 0.502·9-s + 0.665·11-s − 1.78·13-s − 0.315·15-s − 0.430·17-s + 0.509·19-s − 0.266·21-s + 0.508·23-s + 1/5·25-s − 1.05·27-s + 0.392·29-s + 0.482·31-s + 0.469·33-s + 0.169·35-s + 1.66·37-s − 1.25·39-s − 1.10·41-s + 0.0493·43-s + 0.224·45-s + 1.12·47-s + 1/7·49-s − 0.303·51-s + 1.36·53-s − 0.297·55-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(560s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.840607616 |
L(21) |
≈ |
1.840607616 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+p2T |
| 7 | 1+p2T |
good | 3 | 1−11T+p5T2 |
| 11 | 1−267T+p5T2 |
| 13 | 1+1087T+p5T2 |
| 17 | 1+513T+p5T2 |
| 19 | 1−802T+p5T2 |
| 23 | 1−1290T+p5T2 |
| 29 | 1−1779T+p5T2 |
| 31 | 1−2584T+p5T2 |
| 37 | 1−13862T+p5T2 |
| 41 | 1+11904T+p5T2 |
| 43 | 1−598T+p5T2 |
| 47 | 1−17019T+p5T2 |
| 53 | 1−27852T+p5T2 |
| 59 | 1+30912T+p5T2 |
| 61 | 1+1780T+p5T2 |
| 67 | 1+25052T+p5T2 |
| 71 | 1−51984T+p5T2 |
| 73 | 1−47690T+p5T2 |
| 79 | 1−102121T+p5T2 |
| 83 | 1−83676T+p5T2 |
| 89 | 1+32400T+p5T2 |
| 97 | 1+148645T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.685217489136929876532401482308, −9.203772050057122624776058999023, −8.197803174520189394061605679034, −7.40376269087334489308447048222, −6.52798668033269083030857023849, −5.24683370626312080338183158694, −4.20857848538291660616281787201, −3.08719208046657794689392510134, −2.30620156561801784641769181084, −0.62044504649449934031384600739,
0.62044504649449934031384600739, 2.30620156561801784641769181084, 3.08719208046657794689392510134, 4.20857848538291660616281787201, 5.24683370626312080338183158694, 6.52798668033269083030857023849, 7.40376269087334489308447048222, 8.197803174520189394061605679034, 9.203772050057122624776058999023, 9.685217489136929876532401482308