Properties

Label 2-560-1.1-c5-0-13
Degree $2$
Conductor $560$
Sign $1$
Analytic cond. $89.8149$
Root an. cond. $9.47707$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11·3-s − 25·5-s − 49·7-s − 122·9-s + 267·11-s − 1.08e3·13-s − 275·15-s − 513·17-s + 802·19-s − 539·21-s + 1.29e3·23-s + 625·25-s − 4.01e3·27-s + 1.77e3·29-s + 2.58e3·31-s + 2.93e3·33-s + 1.22e3·35-s + 1.38e4·37-s − 1.19e4·39-s − 1.19e4·41-s + 598·43-s + 3.05e3·45-s + 1.70e4·47-s + 2.40e3·49-s − 5.64e3·51-s + 2.78e4·53-s − 6.67e3·55-s + ⋯
L(s)  = 1  + 0.705·3-s − 0.447·5-s − 0.377·7-s − 0.502·9-s + 0.665·11-s − 1.78·13-s − 0.315·15-s − 0.430·17-s + 0.509·19-s − 0.266·21-s + 0.508·23-s + 1/5·25-s − 1.05·27-s + 0.392·29-s + 0.482·31-s + 0.469·33-s + 0.169·35-s + 1.66·37-s − 1.25·39-s − 1.10·41-s + 0.0493·43-s + 0.224·45-s + 1.12·47-s + 1/7·49-s − 0.303·51-s + 1.36·53-s − 0.297·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(89.8149\)
Root analytic conductor: \(9.47707\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.840607616\)
\(L(\frac12)\) \(\approx\) \(1.840607616\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p^{2} T \)
7 \( 1 + p^{2} T \)
good3 \( 1 - 11 T + p^{5} T^{2} \)
11 \( 1 - 267 T + p^{5} T^{2} \)
13 \( 1 + 1087 T + p^{5} T^{2} \)
17 \( 1 + 513 T + p^{5} T^{2} \)
19 \( 1 - 802 T + p^{5} T^{2} \)
23 \( 1 - 1290 T + p^{5} T^{2} \)
29 \( 1 - 1779 T + p^{5} T^{2} \)
31 \( 1 - 2584 T + p^{5} T^{2} \)
37 \( 1 - 13862 T + p^{5} T^{2} \)
41 \( 1 + 11904 T + p^{5} T^{2} \)
43 \( 1 - 598 T + p^{5} T^{2} \)
47 \( 1 - 17019 T + p^{5} T^{2} \)
53 \( 1 - 27852 T + p^{5} T^{2} \)
59 \( 1 + 30912 T + p^{5} T^{2} \)
61 \( 1 + 1780 T + p^{5} T^{2} \)
67 \( 1 + 25052 T + p^{5} T^{2} \)
71 \( 1 - 51984 T + p^{5} T^{2} \)
73 \( 1 - 47690 T + p^{5} T^{2} \)
79 \( 1 - 102121 T + p^{5} T^{2} \)
83 \( 1 - 83676 T + p^{5} T^{2} \)
89 \( 1 + 32400 T + p^{5} T^{2} \)
97 \( 1 + 148645 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.685217489136929876532401482308, −9.203772050057122624776058999023, −8.197803174520189394061605679034, −7.40376269087334489308447048222, −6.52798668033269083030857023849, −5.24683370626312080338183158694, −4.20857848538291660616281787201, −3.08719208046657794689392510134, −2.30620156561801784641769181084, −0.62044504649449934031384600739, 0.62044504649449934031384600739, 2.30620156561801784641769181084, 3.08719208046657794689392510134, 4.20857848538291660616281787201, 5.24683370626312080338183158694, 6.52798668033269083030857023849, 7.40376269087334489308447048222, 8.197803174520189394061605679034, 9.203772050057122624776058999023, 9.685217489136929876532401482308

Graph of the $Z$-function along the critical line