Properties

Label 2-567-63.4-c1-0-29
Degree $2$
Conductor $567$
Sign $-0.474 - 0.880i$
Analytic cond. $4.52751$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.29 − 2.24i)2-s + (−2.34 − 4.06i)4-s − 2.28·5-s + (−2.08 − 1.63i)7-s − 6.97·8-s + (−2.95 + 5.11i)10-s + 2.95·11-s + (−2.13 + 3.69i)13-s + (−6.34 + 2.56i)14-s + (−4.32 + 7.49i)16-s + (−0.764 + 1.32i)17-s + (−3.69 − 6.39i)19-s + (5.35 + 9.28i)20-s + (3.82 − 6.62i)22-s + 6.15·23-s + ⋯
L(s)  = 1  + (0.914 − 1.58i)2-s + (−1.17 − 2.03i)4-s − 1.02·5-s + (−0.787 − 0.616i)7-s − 2.46·8-s + (−0.934 + 1.61i)10-s + 0.891·11-s + (−0.591 + 1.02i)13-s + (−1.69 + 0.684i)14-s + (−1.08 + 1.87i)16-s + (−0.185 + 0.321i)17-s + (−0.846 − 1.46i)19-s + (1.19 + 2.07i)20-s + (0.815 − 1.41i)22-s + 1.28·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.474 - 0.880i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.474 - 0.880i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(567\)    =    \(3^{4} \cdot 7\)
Sign: $-0.474 - 0.880i$
Analytic conductor: \(4.52751\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{567} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 567,\ (\ :1/2),\ -0.474 - 0.880i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.535648 + 0.897340i\)
\(L(\frac12)\) \(\approx\) \(0.535648 + 0.897340i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (2.08 + 1.63i)T \)
good2 \( 1 + (-1.29 + 2.24i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 + 2.28T + 5T^{2} \)
11 \( 1 - 2.95T + 11T^{2} \)
13 \( 1 + (2.13 - 3.69i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (0.764 - 1.32i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.69 + 6.39i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 - 6.15T + 23T^{2} \)
29 \( 1 + (1.17 + 2.02i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (3.11 + 5.38i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (3.58 + 6.21i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (3.94 - 6.83i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (0.417 + 0.722i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-2.91 + 5.04i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-3.71 + 6.44i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (2.31 + 4.00i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-3.56 + 6.17i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.66 - 2.87i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 0.160T + 71T^{2} \)
73 \( 1 + (-0.190 + 0.329i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-3.97 + 6.88i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-2.14 - 3.72i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (3.02 + 5.24i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-0.661 - 1.14i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49058872240353760305658951696, −9.485870412010980895302343287764, −8.905238614689408033666105350117, −7.22957716594408565108386377579, −6.42377487089434661090435755488, −4.86843804450759544720056239592, −4.10107073509334457562733514498, −3.48444940943811202632110840672, −2.16232306959341417980756373950, −0.43598902480773177547188798239, 3.17448927382438564620306559757, 3.89824043188633756207852877932, 5.02877255570607615551498141621, 5.90117261763225180139346086875, 6.82156369083884168371378790030, 7.48690663581172456090797017230, 8.444873437880269726162909753881, 9.064408036808993966817980561781, 10.41195479304186732316196214635, 11.84877300164264630758833268202

Graph of the $Z$-function along the critical line