Properties

Label 4-567e2-1.1-c1e2-0-25
Degree $4$
Conductor $321489$
Sign $1$
Analytic cond. $20.4984$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 4·7-s + 3·13-s + 12·16-s − 9·19-s + 5·25-s + 16·28-s − 37-s + 5·43-s + 9·49-s + 12·52-s + 32·64-s + 22·67-s − 27·73-s − 36·76-s − 26·79-s + 12·91-s − 24·97-s + 20·100-s − 33·103-s + 17·109-s + 48·112-s − 11·121-s + 127-s + 131-s − 36·133-s + 137-s + ⋯
L(s)  = 1  + 2·4-s + 1.51·7-s + 0.832·13-s + 3·16-s − 2.06·19-s + 25-s + 3.02·28-s − 0.164·37-s + 0.762·43-s + 9/7·49-s + 1.66·52-s + 4·64-s + 2.68·67-s − 3.16·73-s − 4.12·76-s − 2.92·79-s + 1.25·91-s − 2.43·97-s + 2·100-s − 3.25·103-s + 1.62·109-s + 4.53·112-s − 121-s + 0.0887·127-s + 0.0873·131-s − 3.12·133-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 321489 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 321489 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(321489\)    =    \(3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(20.4984\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 321489,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.908467081\)
\(L(\frac12)\) \(\approx\) \(3.908467081\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
41$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96640617341950846294003090899, −10.80160183622685390093008698612, −10.14675132633544754035340080738, −10.09037317724438320334506883848, −8.888586260839942921327067006715, −8.761570856361985341027472109431, −8.089800982392398156268615062530, −8.017048840680845066199579534820, −7.24957862861028457395485576462, −6.99457579740512571164538674499, −6.39914518115292003908587222515, −6.13944624876711242862314085014, −5.46350057918716772869735603377, −5.10101186800904647040691920912, −4.06430820569097814351182259876, −4.01687775311236423892081915788, −2.69891741342343106192034128999, −2.65823283055454640986641600539, −1.63767714876374694294915229184, −1.37815594620778404487983892563, 1.37815594620778404487983892563, 1.63767714876374694294915229184, 2.65823283055454640986641600539, 2.69891741342343106192034128999, 4.01687775311236423892081915788, 4.06430820569097814351182259876, 5.10101186800904647040691920912, 5.46350057918716772869735603377, 6.13944624876711242862314085014, 6.39914518115292003908587222515, 6.99457579740512571164538674499, 7.24957862861028457395485576462, 8.017048840680845066199579534820, 8.089800982392398156268615062530, 8.761570856361985341027472109431, 8.888586260839942921327067006715, 10.09037317724438320334506883848, 10.14675132633544754035340080738, 10.80160183622685390093008698612, 10.96640617341950846294003090899

Graph of the $Z$-function along the critical line