L(s) = 1 | + 4·4-s + 4·7-s + 3·13-s + 12·16-s − 9·19-s + 5·25-s + 16·28-s − 37-s + 5·43-s + 9·49-s + 12·52-s + 32·64-s + 22·67-s − 27·73-s − 36·76-s − 26·79-s + 12·91-s − 24·97-s + 20·100-s − 33·103-s + 17·109-s + 48·112-s − 11·121-s + 127-s + 131-s − 36·133-s + 137-s + ⋯ |
L(s) = 1 | + 2·4-s + 1.51·7-s + 0.832·13-s + 3·16-s − 2.06·19-s + 25-s + 3.02·28-s − 0.164·37-s + 0.762·43-s + 9/7·49-s + 1.66·52-s + 4·64-s + 2.68·67-s − 3.16·73-s − 4.12·76-s − 2.92·79-s + 1.25·91-s − 2.43·97-s + 2·100-s − 3.25·103-s + 1.62·109-s + 4.53·112-s − 121-s + 0.0887·127-s + 0.0873·131-s − 3.12·133-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(321489s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(321489s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
321489
= 38⋅72
|
Sign: |
1
|
Analytic conductor: |
20.4984 |
Root analytic conductor: |
2.12779 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 321489, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.908467081 |
L(21) |
≈ |
3.908467081 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C2 | 1−4T+pT2 |
good | 2 | C2 | (1−pT2)2 |
| 5 | C22 | 1−pT2+p2T4 |
| 11 | C22 | 1+pT2+p2T4 |
| 13 | C2 | (1−5T+pT2)(1+2T+pT2) |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C2 | (1+T+pT2)(1+8T+pT2) |
| 23 | C22 | 1+pT2+p2T4 |
| 29 | C22 | 1+pT2+p2T4 |
| 31 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 37 | C2 | (1−10T+pT2)(1+11T+pT2) |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C2 | (1−13T+pT2)(1+8T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C22 | 1+pT2+p2T4 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 67 | C2 | (1−11T+pT2)2 |
| 71 | C2 | (1−pT2)2 |
| 73 | C2 | (1+10T+pT2)(1+17T+pT2) |
| 79 | C2 | (1+13T+pT2)2 |
| 83 | C22 | 1−pT2+p2T4 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C2 | (1+5T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96640617341950846294003090899, −10.80160183622685390093008698612, −10.14675132633544754035340080738, −10.09037317724438320334506883848, −8.888586260839942921327067006715, −8.761570856361985341027472109431, −8.089800982392398156268615062530, −8.017048840680845066199579534820, −7.24957862861028457395485576462, −6.99457579740512571164538674499, −6.39914518115292003908587222515, −6.13944624876711242862314085014, −5.46350057918716772869735603377, −5.10101186800904647040691920912, −4.06430820569097814351182259876, −4.01687775311236423892081915788, −2.69891741342343106192034128999, −2.65823283055454640986641600539, −1.63767714876374694294915229184, −1.37815594620778404487983892563,
1.37815594620778404487983892563, 1.63767714876374694294915229184, 2.65823283055454640986641600539, 2.69891741342343106192034128999, 4.01687775311236423892081915788, 4.06430820569097814351182259876, 5.10101186800904647040691920912, 5.46350057918716772869735603377, 6.13944624876711242862314085014, 6.39914518115292003908587222515, 6.99457579740512571164538674499, 7.24957862861028457395485576462, 8.017048840680845066199579534820, 8.089800982392398156268615062530, 8.761570856361985341027472109431, 8.888586260839942921327067006715, 10.09037317724438320334506883848, 10.14675132633544754035340080738, 10.80160183622685390093008698612, 10.96640617341950846294003090899