L(s) = 1 | + (−0.745 + 0.625i)2-s + (0.0227 − 1.73i)3-s + (−0.182 + 1.03i)4-s + (3.79 − 0.668i)5-s + (1.06 + 1.30i)6-s + (−0.469 + 0.813i)7-s + (−1.48 − 2.57i)8-s + (−2.99 − 0.0789i)9-s + (−2.40 + 2.87i)10-s + (−3.44 + 1.99i)11-s + (1.79 + 0.340i)12-s + (−0.353 − 0.970i)13-s + (−0.158 − 0.901i)14-s + (−1.07 − 6.58i)15-s + (0.740 + 0.269i)16-s + (0.804 + 0.958i)17-s + ⋯ |
L(s) = 1 | + (−0.527 + 0.442i)2-s + (0.0131 − 0.999i)3-s + (−0.0913 + 0.518i)4-s + (1.69 − 0.298i)5-s + (0.435 + 0.533i)6-s + (−0.177 + 0.307i)7-s + (−0.525 − 0.909i)8-s + (−0.999 − 0.0263i)9-s + (−0.761 + 0.907i)10-s + (−1.03 + 0.600i)11-s + (0.516 + 0.0981i)12-s + (−0.0979 − 0.269i)13-s + (−0.0424 − 0.240i)14-s + (−0.276 − 1.69i)15-s + (0.185 + 0.0673i)16-s + (0.195 + 0.232i)17-s + ⋯ |
Λ(s)=(=(57s/2ΓC(s)L(s)(0.997−0.0646i)Λ(2−s)
Λ(s)=(=(57s/2ΓC(s+1/2)L(s)(0.997−0.0646i)Λ(1−s)
Degree: |
2 |
Conductor: |
57
= 3⋅19
|
Sign: |
0.997−0.0646i
|
Analytic conductor: |
0.455147 |
Root analytic conductor: |
0.674646 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ57(32,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 57, ( :1/2), 0.997−0.0646i)
|
Particular Values
L(1) |
≈ |
0.752142+0.0243217i |
L(21) |
≈ |
0.752142+0.0243217i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.0227+1.73i)T |
| 19 | 1+(4.22−1.09i)T |
good | 2 | 1+(0.745−0.625i)T+(0.347−1.96i)T2 |
| 5 | 1+(−3.79+0.668i)T+(4.69−1.71i)T2 |
| 7 | 1+(0.469−0.813i)T+(−3.5−6.06i)T2 |
| 11 | 1+(3.44−1.99i)T+(5.5−9.52i)T2 |
| 13 | 1+(0.353+0.970i)T+(−9.95+8.35i)T2 |
| 17 | 1+(−0.804−0.958i)T+(−2.95+16.7i)T2 |
| 23 | 1+(−0.477−0.0842i)T+(21.6+7.86i)T2 |
| 29 | 1+(3.32+2.79i)T+(5.03+28.5i)T2 |
| 31 | 1+(−4.26−2.46i)T+(15.5+26.8i)T2 |
| 37 | 1+1.10iT−37T2 |
| 41 | 1+(2.04+0.745i)T+(31.4+26.3i)T2 |
| 43 | 1+(1.00+5.68i)T+(−40.4+14.7i)T2 |
| 47 | 1+(−4.96+5.91i)T+(−8.16−46.2i)T2 |
| 53 | 1+(1.34−7.60i)T+(−49.8−18.1i)T2 |
| 59 | 1+(−5.26+4.41i)T+(10.2−58.1i)T2 |
| 61 | 1+(−0.740+4.19i)T+(−57.3−20.8i)T2 |
| 67 | 1+(−0.918+1.09i)T+(−11.6−65.9i)T2 |
| 71 | 1+(0.438+2.48i)T+(−66.7+24.2i)T2 |
| 73 | 1+(−8.28−3.01i)T+(55.9+46.9i)T2 |
| 79 | 1+(1.50−4.12i)T+(−60.5−50.7i)T2 |
| 83 | 1+(−3.66−2.11i)T+(41.5+71.8i)T2 |
| 89 | 1+(7.56−2.75i)T+(68.1−57.2i)T2 |
| 97 | 1+(6.91+8.24i)T+(−16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.33815943906876514476904918940, −13.84153608934125669909046272436, −12.95602643933962346507748373240, −12.39446016659406824477569125268, −10.31253276706278026752767350073, −9.133155658137541700741982231298, −8.059536609143553624012683588058, −6.71241508658591204233581585497, −5.57481108667172655730027824333, −2.38270525398588913453961998960,
2.56207921107022638495579854103, 5.15037944379188205793096949226, 6.16061506480817802602742977908, 8.688332631782797584892628433426, 9.730233301008090417395339116466, 10.34729716360187648883185241093, 11.15275347054492846082042707525, 13.28972213459351100389050163580, 14.16347240811914020412538276146, 15.09231346072462553354643257150