L(s) = 1 | − 2-s + (−1 + 1.41i)3-s + 4-s − i·5-s + (1 − 1.41i)6-s + 3.41·7-s − 8-s + (−1.00 − 2.82i)9-s + i·10-s + 2.58i·11-s + (−1 + 1.41i)12-s − 6.24i·13-s − 3.41·14-s + (1.41 + i)15-s + 16-s − 2.82i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.577 + 0.816i)3-s + 0.5·4-s − 0.447i·5-s + (0.408 − 0.577i)6-s + 1.29·7-s − 0.353·8-s + (−0.333 − 0.942i)9-s + 0.316i·10-s + 0.779i·11-s + (−0.288 + 0.408i)12-s − 1.73i·13-s − 0.912·14-s + (0.365 + 0.258i)15-s + 0.250·16-s − 0.685i·17-s + ⋯ |
Λ(s)=(=(570s/2ΓC(s)L(s)(0.927+0.374i)Λ(2−s)
Λ(s)=(=(570s/2ΓC(s+1/2)L(s)(0.927+0.374i)Λ(1−s)
Degree: |
2 |
Conductor: |
570
= 2⋅3⋅5⋅19
|
Sign: |
0.927+0.374i
|
Analytic conductor: |
4.55147 |
Root analytic conductor: |
2.13341 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ570(341,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 570, ( :1/2), 0.927+0.374i)
|
Particular Values
L(1) |
≈ |
0.903618−0.175659i |
L(21) |
≈ |
0.903618−0.175659i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+(1−1.41i)T |
| 5 | 1+iT |
| 19 | 1+(4.24−i)T |
good | 7 | 1−3.41T+7T2 |
| 11 | 1−2.58iT−11T2 |
| 13 | 1+6.24iT−13T2 |
| 17 | 1+2.82iT−17T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−9.07T+29T2 |
| 31 | 1−1.17iT−31T2 |
| 37 | 1+6.24iT−37T2 |
| 41 | 1+3.07T+41T2 |
| 43 | 1−9.41T+43T2 |
| 47 | 1−8.82iT−47T2 |
| 53 | 1−8.82T+53T2 |
| 59 | 1−7.17T+59T2 |
| 61 | 1−12.4T+61T2 |
| 67 | 1−67T2 |
| 71 | 1+2.82T+71T2 |
| 73 | 1+14.4T+73T2 |
| 79 | 1+9.31iT−79T2 |
| 83 | 1+7.17iT−83T2 |
| 89 | 1+13.4T+89T2 |
| 97 | 1−9.41iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46806142761083857396304238053, −10.10049205314492014644531484981, −8.823480936306068995985327888705, −8.297655785930812812975445660672, −7.27667189790026424773862825380, −5.98540694012270788031111082900, −5.03887163466081568366153761917, −4.30541185027600792492673443088, −2.58225121220856977310922473630, −0.804001058421859420290469090962,
1.35657485493794321942914727266, 2.33839329309589272615354702397, 4.22122000047918702823790887336, 5.50175612034016594296986682554, 6.52713972028414602226997519436, 7.14946053955124206373481033098, 8.277263154047694248599380089730, 8.658180644461699747566894654653, 10.10605250084482035912886282758, 10.99044168036423299835057418374