Properties

Label 2-5712-1.1-c1-0-12
Degree $2$
Conductor $5712$
Sign $1$
Analytic cond. $45.6105$
Root an. cond. $6.75355$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 7-s + 9-s − 2·13-s − 2·15-s − 17-s − 6·19-s + 21-s − 8·23-s − 25-s − 27-s − 4·29-s − 2·35-s + 10·37-s + 2·39-s + 10·41-s + 8·43-s + 2·45-s + 8·47-s + 49-s + 51-s + 6·53-s + 6·57-s + 4·59-s − 8·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 0.377·7-s + 1/3·9-s − 0.554·13-s − 0.516·15-s − 0.242·17-s − 1.37·19-s + 0.218·21-s − 1.66·23-s − 1/5·25-s − 0.192·27-s − 0.742·29-s − 0.338·35-s + 1.64·37-s + 0.320·39-s + 1.56·41-s + 1.21·43-s + 0.298·45-s + 1.16·47-s + 1/7·49-s + 0.140·51-s + 0.824·53-s + 0.794·57-s + 0.520·59-s − 1.02·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5712\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(45.6105\)
Root analytic conductor: \(6.75355\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.390802328\)
\(L(\frac12)\) \(\approx\) \(1.390802328\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.967534058776462620796826987336, −7.42593018296492102848997665665, −6.39144411162584512587614181804, −6.05511858868767545804607064640, −5.48087740960946979158554221775, −4.38900191320476067910239169923, −3.93341427342984347367353728718, −2.45311772687458267392866671595, −2.06192578108688719125291261421, −0.62103412295080556702762325135, 0.62103412295080556702762325135, 2.06192578108688719125291261421, 2.45311772687458267392866671595, 3.93341427342984347367353728718, 4.38900191320476067910239169923, 5.48087740960946979158554221775, 6.05511858868767545804607064640, 6.39144411162584512587614181804, 7.42593018296492102848997665665, 7.967534058776462620796826987336

Graph of the $Z$-function along the critical line