L(s) = 1 | − 2.61·2-s + 4.81·4-s − 3.81·5-s − 7.34·8-s + 9.95·10-s + 4.73·11-s − 13-s + 9.55·16-s − 5.22·17-s − 2.92·19-s − 18.3·20-s − 12.3·22-s − 3.33·23-s + 9.55·25-s + 2.61·26-s + 0.922·29-s + 7.51·31-s − 10.2·32-s + 13.6·34-s + 0.154·37-s + 7.62·38-s + 28.0·40-s + 6.36·41-s − 6.55·43-s + 22.8·44-s + 8.69·46-s + 9.03·47-s + ⋯ |
L(s) = 1 | − 1.84·2-s + 2.40·4-s − 1.70·5-s − 2.59·8-s + 3.14·10-s + 1.42·11-s − 0.277·13-s + 2.38·16-s − 1.26·17-s − 0.670·19-s − 4.10·20-s − 2.63·22-s − 0.694·23-s + 1.91·25-s + 0.511·26-s + 0.171·29-s + 1.35·31-s − 1.81·32-s + 2.33·34-s + 0.0254·37-s + 1.23·38-s + 4.43·40-s + 0.994·41-s − 0.999·43-s + 3.43·44-s + 1.28·46-s + 1.31·47-s + ⋯ |
Λ(s)=(=(5733s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5733s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1+T |
good | 2 | 1+2.61T+2T2 |
| 5 | 1+3.81T+5T2 |
| 11 | 1−4.73T+11T2 |
| 17 | 1+5.22T+17T2 |
| 19 | 1+2.92T+19T2 |
| 23 | 1+3.33T+23T2 |
| 29 | 1−0.922T+29T2 |
| 31 | 1−7.51T+31T2 |
| 37 | 1−0.154T+37T2 |
| 41 | 1−6.36T+41T2 |
| 43 | 1+6.55T+43T2 |
| 47 | 1−9.03T+47T2 |
| 53 | 1+8.55T+53T2 |
| 59 | 1−3.95T+59T2 |
| 61 | 1+12.4T+61T2 |
| 67 | 1+10.6T+67T2 |
| 71 | 1−6.58T+71T2 |
| 73 | 1−7.73T+73T2 |
| 79 | 1−13.3T+79T2 |
| 83 | 1+1.40T+83T2 |
| 89 | 1+1.96T+89T2 |
| 97 | 1−2.11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.018418909771570376364735413933, −7.28129006344996689288496539812, −6.65051742935430940916553814124, −6.22990041440798402899152382151, −4.56729295247629563909694239013, −4.02809745942750714628333507919, −3.01951775836285878222624563232, −2.02128732798285343792710446009, −0.917038887603706134983942892517, 0,
0.917038887603706134983942892517, 2.02128732798285343792710446009, 3.01951775836285878222624563232, 4.02809745942750714628333507919, 4.56729295247629563909694239013, 6.22990041440798402899152382151, 6.65051742935430940916553814124, 7.28129006344996689288496539812, 8.018418909771570376364735413933