Properties

Label 2-5733-1.1-c1-0-122
Degree $2$
Conductor $5733$
Sign $-1$
Analytic cond. $45.7782$
Root an. cond. $6.76596$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.43·2-s + 0.0731·4-s + 0.926·5-s + 2.77·8-s − 1.33·10-s − 4.21·11-s − 13-s − 4.14·16-s − 2.87·17-s + 1.28·19-s + 0.0678·20-s + 6.06·22-s + 8.02·23-s − 4.14·25-s + 1.43·26-s − 3.28·29-s + 7.04·31-s + 0.413·32-s + 4.14·34-s + 8.57·37-s − 1.85·38-s + 2.57·40-s − 12.0·41-s + 7.14·43-s − 0.308·44-s − 11.5·46-s + 1.95·47-s + ⋯
L(s)  = 1  − 1.01·2-s + 0.0365·4-s + 0.414·5-s + 0.980·8-s − 0.422·10-s − 1.27·11-s − 0.277·13-s − 1.03·16-s − 0.698·17-s + 0.295·19-s + 0.0151·20-s + 1.29·22-s + 1.67·23-s − 0.828·25-s + 0.282·26-s − 0.610·29-s + 1.26·31-s + 0.0731·32-s + 0.711·34-s + 1.40·37-s − 0.300·38-s + 0.406·40-s − 1.88·41-s + 1.08·43-s − 0.0464·44-s − 1.70·46-s + 0.284·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5733\)    =    \(3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(45.7782\)
Root analytic conductor: \(6.76596\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5733,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + 1.43T + 2T^{2} \)
5 \( 1 - 0.926T + 5T^{2} \)
11 \( 1 + 4.21T + 11T^{2} \)
17 \( 1 + 2.87T + 17T^{2} \)
19 \( 1 - 1.28T + 19T^{2} \)
23 \( 1 - 8.02T + 23T^{2} \)
29 \( 1 + 3.28T + 29T^{2} \)
31 \( 1 - 7.04T + 31T^{2} \)
37 \( 1 - 8.57T + 37T^{2} \)
41 \( 1 + 12.0T + 41T^{2} \)
43 \( 1 - 7.14T + 43T^{2} \)
47 \( 1 - 1.95T + 47T^{2} \)
53 \( 1 - 5.14T + 53T^{2} \)
59 \( 1 + 7.33T + 59T^{2} \)
61 \( 1 + 7.75T + 61T^{2} \)
67 \( 1 - 12.0T + 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 - 8.32T + 73T^{2} \)
79 \( 1 - 4.47T + 79T^{2} \)
83 \( 1 + 3.80T + 83T^{2} \)
89 \( 1 + 5.64T + 89T^{2} \)
97 \( 1 + 6.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88022923768521512617289112024, −7.30012484176485825628825041203, −6.54927108246297572888901124092, −5.53795868160919085390447662320, −4.93839525140265462414638901037, −4.20542055827670338463232149552, −2.93962049313617378947003947423, −2.21237405843254983204492030968, −1.11834739631990087472559495899, 0, 1.11834739631990087472559495899, 2.21237405843254983204492030968, 2.93962049313617378947003947423, 4.20542055827670338463232149552, 4.93839525140265462414638901037, 5.53795868160919085390447662320, 6.54927108246297572888901124092, 7.30012484176485825628825041203, 7.88022923768521512617289112024

Graph of the $Z$-function along the critical line