L(s) = 1 | − 1.43·2-s + 0.0731·4-s + 0.926·5-s + 2.77·8-s − 1.33·10-s − 4.21·11-s − 13-s − 4.14·16-s − 2.87·17-s + 1.28·19-s + 0.0678·20-s + 6.06·22-s + 8.02·23-s − 4.14·25-s + 1.43·26-s − 3.28·29-s + 7.04·31-s + 0.413·32-s + 4.14·34-s + 8.57·37-s − 1.85·38-s + 2.57·40-s − 12.0·41-s + 7.14·43-s − 0.308·44-s − 11.5·46-s + 1.95·47-s + ⋯ |
L(s) = 1 | − 1.01·2-s + 0.0365·4-s + 0.414·5-s + 0.980·8-s − 0.422·10-s − 1.27·11-s − 0.277·13-s − 1.03·16-s − 0.698·17-s + 0.295·19-s + 0.0151·20-s + 1.29·22-s + 1.67·23-s − 0.828·25-s + 0.282·26-s − 0.610·29-s + 1.26·31-s + 0.0731·32-s + 0.711·34-s + 1.40·37-s − 0.300·38-s + 0.406·40-s − 1.88·41-s + 1.08·43-s − 0.0464·44-s − 1.70·46-s + 0.284·47-s + ⋯ |
Λ(s)=(=(5733s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5733s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1+T |
good | 2 | 1+1.43T+2T2 |
| 5 | 1−0.926T+5T2 |
| 11 | 1+4.21T+11T2 |
| 17 | 1+2.87T+17T2 |
| 19 | 1−1.28T+19T2 |
| 23 | 1−8.02T+23T2 |
| 29 | 1+3.28T+29T2 |
| 31 | 1−7.04T+31T2 |
| 37 | 1−8.57T+37T2 |
| 41 | 1+12.0T+41T2 |
| 43 | 1−7.14T+43T2 |
| 47 | 1−1.95T+47T2 |
| 53 | 1−5.14T+53T2 |
| 59 | 1+7.33T+59T2 |
| 61 | 1+7.75T+61T2 |
| 67 | 1−12.0T+67T2 |
| 71 | 1+10.7T+71T2 |
| 73 | 1−8.32T+73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1+3.80T+83T2 |
| 89 | 1+5.64T+89T2 |
| 97 | 1+6.90T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.88022923768521512617289112024, −7.30012484176485825628825041203, −6.54927108246297572888901124092, −5.53795868160919085390447662320, −4.93839525140265462414638901037, −4.20542055827670338463232149552, −2.93962049313617378947003947423, −2.21237405843254983204492030968, −1.11834739631990087472559495899, 0,
1.11834739631990087472559495899, 2.21237405843254983204492030968, 2.93962049313617378947003947423, 4.20542055827670338463232149552, 4.93839525140265462414638901037, 5.53795868160919085390447662320, 6.54927108246297572888901124092, 7.30012484176485825628825041203, 7.88022923768521512617289112024