L(s) = 1 | − 4·4-s + 9i·7-s − 9·9-s + 16·16-s − 11i·17-s − 23i·23-s − 36i·28-s + 57·29-s − 53·31-s + 36·36-s − 51i·37-s − 33·41-s − 6i·43-s − 32·49-s − 101i·53-s + ⋯ |
L(s) = 1 | − 4-s + 1.28i·7-s − 9-s + 16-s − 0.647i·17-s − i·23-s − 1.28i·28-s + 1.96·29-s − 1.70·31-s + 36-s − 1.37i·37-s − 0.804·41-s − 0.139i·43-s − 0.653·49-s − 1.90i·53-s + ⋯ |
Λ(s)=(=(575s/2ΓC(s)L(s)iΛ(3−s)
Λ(s)=(=(575s/2ΓC(s+1)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
575
= 52⋅23
|
Sign: |
i
|
Analytic conductor: |
15.6676 |
Root analytic conductor: |
3.95823 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ575(551,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 575, ( :1), i)
|
Particular Values
L(23) |
≈ |
0.6278149582 |
L(21) |
≈ |
0.6278149582 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 23 | 1+23iT |
good | 2 | 1+4T2 |
| 3 | 1+9T2 |
| 7 | 1−9iT−49T2 |
| 11 | 1−121T2 |
| 13 | 1+169T2 |
| 17 | 1+11iT−289T2 |
| 19 | 1−361T2 |
| 29 | 1−57T+841T2 |
| 31 | 1+53T+961T2 |
| 37 | 1+51iT−1.36e3T2 |
| 41 | 1+33T+1.68e3T2 |
| 43 | 1+6iT−1.84e3T2 |
| 47 | 1+2.20e3T2 |
| 53 | 1+101iT−2.80e3T2 |
| 59 | 1+3T+3.48e3T2 |
| 61 | 1−3.72e3T2 |
| 67 | 1+111iT−4.48e3T2 |
| 71 | 1−27T+5.04e3T2 |
| 73 | 1+5.32e3T2 |
| 79 | 1−6.24e3T2 |
| 83 | 1+41iT−6.88e3T2 |
| 89 | 1−7.92e3T2 |
| 97 | 1−174iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18639044708063414484515009731, −9.112746519857093525942293249269, −8.770644637692087626720310551335, −7.944348273142579988588109488481, −6.48787221812149731211365780830, −5.49290367521561014015759795903, −4.89131446991755701886211113823, −3.46152165171184711003592216770, −2.35155000208740894444951165322, −0.28379869387443741491947971854,
1.14843055427792614031553325437, 3.18167906418851621428924614159, 4.09429201901764397941036095313, 5.07282144531352294338782397822, 6.09654011047177270819405022452, 7.29017626822810836817548691053, 8.205352300985606674228640565642, 8.902425802114176384682052524904, 9.948904697411811935954663266421, 10.56958895106232392908395374872