Properties

Label 2-575-23.22-c2-0-44
Degree $2$
Conductor $575$
Sign $i$
Analytic cond. $15.6676$
Root an. cond. $3.95823$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 9i·7-s − 9·9-s + 16·16-s − 11i·17-s − 23i·23-s − 36i·28-s + 57·29-s − 53·31-s + 36·36-s − 51i·37-s − 33·41-s − 6i·43-s − 32·49-s − 101i·53-s + ⋯
L(s)  = 1  − 4-s + 1.28i·7-s − 9-s + 16-s − 0.647i·17-s i·23-s − 1.28i·28-s + 1.96·29-s − 1.70·31-s + 36-s − 1.37i·37-s − 0.804·41-s − 0.139i·43-s − 0.653·49-s − 1.90i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 575 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(575\)    =    \(5^{2} \cdot 23\)
Sign: $i$
Analytic conductor: \(15.6676\)
Root analytic conductor: \(3.95823\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{575} (551, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 575,\ (\ :1),\ i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6278149582\)
\(L(\frac12)\) \(\approx\) \(0.6278149582\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
23 \( 1 + 23iT \)
good2 \( 1 + 4T^{2} \)
3 \( 1 + 9T^{2} \)
7 \( 1 - 9iT - 49T^{2} \)
11 \( 1 - 121T^{2} \)
13 \( 1 + 169T^{2} \)
17 \( 1 + 11iT - 289T^{2} \)
19 \( 1 - 361T^{2} \)
29 \( 1 - 57T + 841T^{2} \)
31 \( 1 + 53T + 961T^{2} \)
37 \( 1 + 51iT - 1.36e3T^{2} \)
41 \( 1 + 33T + 1.68e3T^{2} \)
43 \( 1 + 6iT - 1.84e3T^{2} \)
47 \( 1 + 2.20e3T^{2} \)
53 \( 1 + 101iT - 2.80e3T^{2} \)
59 \( 1 + 3T + 3.48e3T^{2} \)
61 \( 1 - 3.72e3T^{2} \)
67 \( 1 + 111iT - 4.48e3T^{2} \)
71 \( 1 - 27T + 5.04e3T^{2} \)
73 \( 1 + 5.32e3T^{2} \)
79 \( 1 - 6.24e3T^{2} \)
83 \( 1 + 41iT - 6.88e3T^{2} \)
89 \( 1 - 7.92e3T^{2} \)
97 \( 1 - 174iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18639044708063414484515009731, −9.112746519857093525942293249269, −8.770644637692087626720310551335, −7.944348273142579988588109488481, −6.48787221812149731211365780830, −5.49290367521561014015759795903, −4.89131446991755701886211113823, −3.46152165171184711003592216770, −2.35155000208740894444951165322, −0.28379869387443741491947971854, 1.14843055427792614031553325437, 3.18167906418851621428924614159, 4.09429201901764397941036095313, 5.07282144531352294338782397822, 6.09654011047177270819405022452, 7.29017626822810836817548691053, 8.205352300985606674228640565642, 8.902425802114176384682052524904, 9.948904697411811935954663266421, 10.56958895106232392908395374872

Graph of the $Z$-function along the critical line