L(s) = 1 | − 4.96i·2-s − 7.15i·3-s − 16.6·4-s − 35.5·6-s + 3.69i·7-s + 42.7i·8-s − 24.2·9-s − 25.2·11-s + 118. i·12-s + 29.3i·13-s + 18.3·14-s + 79.1·16-s + 80.9i·17-s + 120. i·18-s + 48.2·19-s + ⋯ |
L(s) = 1 | − 1.75i·2-s − 1.37i·3-s − 2.07·4-s − 2.41·6-s + 0.199i·7-s + 1.88i·8-s − 0.896·9-s − 0.693·11-s + 2.86i·12-s + 0.625i·13-s + 0.349·14-s + 1.23·16-s + 1.15i·17-s + 1.57i·18-s + 0.582·19-s + ⋯ |
Λ(s)=(=(575s/2ΓC(s)L(s)(0.447+0.894i)Λ(4−s)
Λ(s)=(=(575s/2ΓC(s+3/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
575
= 52⋅23
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
33.9260 |
Root analytic conductor: |
5.82461 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ575(24,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 575, ( :3/2), 0.447+0.894i)
|
Particular Values
L(2) |
≈ |
0.6656362144 |
L(21) |
≈ |
0.6656362144 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 23 | 1−23iT |
good | 2 | 1+4.96iT−8T2 |
| 3 | 1+7.15iT−27T2 |
| 7 | 1−3.69iT−343T2 |
| 11 | 1+25.2T+1.33e3T2 |
| 13 | 1−29.3iT−2.19e3T2 |
| 17 | 1−80.9iT−4.91e3T2 |
| 19 | 1−48.2T+6.85e3T2 |
| 29 | 1−161.T+2.43e4T2 |
| 31 | 1+261.T+2.97e4T2 |
| 37 | 1+37.1iT−5.06e4T2 |
| 41 | 1+135.T+6.89e4T2 |
| 43 | 1−304.iT−7.95e4T2 |
| 47 | 1−200.iT−1.03e5T2 |
| 53 | 1+384.iT−1.48e5T2 |
| 59 | 1+113.T+2.05e5T2 |
| 61 | 1+763.T+2.26e5T2 |
| 67 | 1−736.iT−3.00e5T2 |
| 71 | 1−721.T+3.57e5T2 |
| 73 | 1+380.iT−3.89e5T2 |
| 79 | 1+754.T+4.93e5T2 |
| 83 | 1−1.18e3iT−5.71e5T2 |
| 89 | 1+611.T+7.04e5T2 |
| 97 | 1+371.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42052993829885563929255167562, −9.469211873940126044313536256686, −8.537285549005033450547886682533, −7.70716679459698732726672511399, −6.57943958333695508612400252045, −5.39100374557591419276929767613, −4.11021936565182095476877787367, −2.90722680952208905230533158755, −1.95749975864769479801103215298, −1.16487393682732829392293628168,
0.21999693834752914058389280658, 3.12845530579733731621139992706, 4.31190681461206794674446533583, 5.12930830513413430404681391330, 5.64405286598408971864614133597, 6.97679627404191382927944118205, 7.68875365203034957317047536212, 8.689210889859432384517035660276, 9.382268620349151378065105768773, 10.17850000694931834986363889509