L(s) = 1 | − 4.96i·2-s − 7.15i·3-s − 16.6·4-s − 35.5·6-s + 3.69i·7-s + 42.7i·8-s − 24.2·9-s − 25.2·11-s + 118. i·12-s + 29.3i·13-s + 18.3·14-s + 79.1·16-s + 80.9i·17-s + 120. i·18-s + 48.2·19-s + ⋯ |
L(s) = 1 | − 1.75i·2-s − 1.37i·3-s − 2.07·4-s − 2.41·6-s + 0.199i·7-s + 1.88i·8-s − 0.896·9-s − 0.693·11-s + 2.86i·12-s + 0.625i·13-s + 0.349·14-s + 1.23·16-s + 1.15i·17-s + 1.57i·18-s + 0.582·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6656362144\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6656362144\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 23 | \( 1 - 23iT \) |
good | 2 | \( 1 + 4.96iT - 8T^{2} \) |
| 3 | \( 1 + 7.15iT - 27T^{2} \) |
| 7 | \( 1 - 3.69iT - 343T^{2} \) |
| 11 | \( 1 + 25.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 29.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 80.9iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 48.2T + 6.85e3T^{2} \) |
| 29 | \( 1 - 161.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 261.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 37.1iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 135.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 304. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 200. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 384. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 113.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 763.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 736. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 721.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 380. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 754.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.18e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 611.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 371. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42052993829885563929255167562, −9.469211873940126044313536256686, −8.537285549005033450547886682533, −7.70716679459698732726672511399, −6.57943958333695508612400252045, −5.39100374557591419276929767613, −4.11021936565182095476877787367, −2.90722680952208905230533158755, −1.95749975864769479801103215298, −1.16487393682732829392293628168,
0.21999693834752914058389280658, 3.12845530579733731621139992706, 4.31190681461206794674446533583, 5.12930830513413430404681391330, 5.64405286598408971864614133597, 6.97679627404191382927944118205, 7.68875365203034957317047536212, 8.689210889859432384517035660276, 9.382268620349151378065105768773, 10.17850000694931834986363889509