Properties

Label 2-24e2-8.5-c1-0-9
Degree $2$
Conductor $576$
Sign $-0.965 + 0.258i$
Analytic cond. $4.59938$
Root an. cond. $2.14461$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46i·5-s − 3.46·7-s − 6·17-s + 4i·19-s − 6.92·23-s − 6.99·25-s − 3.46i·29-s + 3.46·31-s + 11.9i·35-s − 6.92i·37-s + 6·41-s − 4i·43-s − 6.92·47-s + 4.99·49-s + 3.46i·53-s + ⋯
L(s)  = 1  − 1.54i·5-s − 1.30·7-s − 1.45·17-s + 0.917i·19-s − 1.44·23-s − 1.39·25-s − 0.643i·29-s + 0.622·31-s + 2.02i·35-s − 1.13i·37-s + 0.937·41-s − 0.609i·43-s − 1.01·47-s + 0.714·49-s + 0.475i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-0.965 + 0.258i$
Analytic conductor: \(4.59938\)
Root analytic conductor: \(2.14461\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :1/2),\ -0.965 + 0.258i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0714142 - 0.542445i\)
\(L(\frac12)\) \(\approx\) \(0.0714142 - 0.542445i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3.46iT - 5T^{2} \)
7 \( 1 + 3.46T + 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 - 4iT - 19T^{2} \)
23 \( 1 + 6.92T + 23T^{2} \)
29 \( 1 + 3.46iT - 29T^{2} \)
31 \( 1 - 3.46T + 31T^{2} \)
37 \( 1 + 6.92iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 6.92T + 47T^{2} \)
53 \( 1 - 3.46iT - 53T^{2} \)
59 \( 1 + 12iT - 59T^{2} \)
61 \( 1 + 6.92iT - 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 - 6.92T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 + 10.3T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02989057263215053938642930455, −9.457353418372534879309284036392, −8.656571848222829156585026925487, −7.84507612092177261103405542132, −6.49884461459931999062935756134, −5.78634424990708311522391769652, −4.57785343525255765807176907092, −3.73345116502139062215289856543, −2.07069782043318117443728681898, −0.28700099775010193211999135644, 2.45087938671556506621215799675, 3.21163461637970297056113286163, 4.37100312099716250778362272705, 6.04917201706116232523680282273, 6.61726129034001713973828793813, 7.24922420199386008717698723083, 8.531454437995464666502181061694, 9.618582323950146814403088677850, 10.21986442940077278589817239545, 11.04976536597921975684010107815

Graph of the $Z$-function along the critical line