L(s) = 1 | − 3.46i·5-s − 3.46·7-s − 6·17-s + 4i·19-s − 6.92·23-s − 6.99·25-s − 3.46i·29-s + 3.46·31-s + 11.9i·35-s − 6.92i·37-s + 6·41-s − 4i·43-s − 6.92·47-s + 4.99·49-s + 3.46i·53-s + ⋯ |
L(s) = 1 | − 1.54i·5-s − 1.30·7-s − 1.45·17-s + 0.917i·19-s − 1.44·23-s − 1.39·25-s − 0.643i·29-s + 0.622·31-s + 2.02i·35-s − 1.13i·37-s + 0.937·41-s − 0.609i·43-s − 1.01·47-s + 0.714·49-s + 0.475i·53-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)(−0.965+0.258i)Λ(2−s)
Λ(s)=(=(576s/2ΓC(s+1/2)L(s)(−0.965+0.258i)Λ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
−0.965+0.258i
|
Analytic conductor: |
4.59938 |
Root analytic conductor: |
2.14461 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :1/2), −0.965+0.258i)
|
Particular Values
L(1) |
≈ |
0.0714142−0.542445i |
L(21) |
≈ |
0.0714142−0.542445i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+3.46iT−5T2 |
| 7 | 1+3.46T+7T2 |
| 11 | 1−11T2 |
| 13 | 1−13T2 |
| 17 | 1+6T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+6.92T+23T2 |
| 29 | 1+3.46iT−29T2 |
| 31 | 1−3.46T+31T2 |
| 37 | 1+6.92iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+6.92T+47T2 |
| 53 | 1−3.46iT−53T2 |
| 59 | 1+12iT−59T2 |
| 61 | 1+6.92iT−61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1−6.92T+71T2 |
| 73 | 1−2T+73T2 |
| 79 | 1+10.3T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02989057263215053938642930455, −9.457353418372534879309284036392, −8.656571848222829156585026925487, −7.84507612092177261103405542132, −6.49884461459931999062935756134, −5.78634424990708311522391769652, −4.57785343525255765807176907092, −3.73345116502139062215289856543, −2.07069782043318117443728681898, −0.28700099775010193211999135644,
2.45087938671556506621215799675, 3.21163461637970297056113286163, 4.37100312099716250778362272705, 6.04917201706116232523680282273, 6.61726129034001713973828793813, 7.24922420199386008717698723083, 8.531454437995464666502181061694, 9.618582323950146814403088677850, 10.21986442940077278589817239545, 11.04976536597921975684010107815