L(s) = 1 | + (−1.65 − 2.50i)3-s + (0.721 − 0.416i)5-s + (1.26 − 2.18i)7-s + (−3.53 + 8.27i)9-s + (−9.47 − 5.47i)11-s + (−4.36 − 7.55i)13-s + (−2.23 − 1.11i)15-s + 20.8i·17-s − 1.50·19-s + (−7.54 + 0.454i)21-s + (−1.00 + 0.578i)23-s + (−12.1 + 21.0i)25-s + (26.5 − 4.84i)27-s + (−15.7 − 9.08i)29-s + (−25.6 − 44.4i)31-s + ⋯ |
L(s) = 1 | + (−0.551 − 0.834i)3-s + (0.144 − 0.0832i)5-s + (0.180 − 0.311i)7-s + (−0.392 + 0.919i)9-s + (−0.861 − 0.497i)11-s + (−0.335 − 0.581i)13-s + (−0.148 − 0.0744i)15-s + 1.22i·17-s − 0.0790·19-s + (−0.359 + 0.0216i)21-s + (−0.0435 + 0.0251i)23-s + (−0.486 + 0.842i)25-s + (0.983 − 0.179i)27-s + (−0.542 − 0.313i)29-s + (−0.828 − 1.43i)31-s + ⋯ |
Λ(s)=(=(576s/2ΓC(s)L(s)(−0.452−0.891i)Λ(3−s)
Λ(s)=(=(576s/2ΓC(s+1)L(s)(−0.452−0.891i)Λ(1−s)
Degree: |
2 |
Conductor: |
576
= 26⋅32
|
Sign: |
−0.452−0.891i
|
Analytic conductor: |
15.6948 |
Root analytic conductor: |
3.96167 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ576(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 576, ( :1), −0.452−0.891i)
|
Particular Values
L(23) |
≈ |
0.1420411536 |
L(21) |
≈ |
0.1420411536 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.65+2.50i)T |
good | 5 | 1+(−0.721+0.416i)T+(12.5−21.6i)T2 |
| 7 | 1+(−1.26+2.18i)T+(−24.5−42.4i)T2 |
| 11 | 1+(9.47+5.47i)T+(60.5+104.i)T2 |
| 13 | 1+(4.36+7.55i)T+(−84.5+146.i)T2 |
| 17 | 1−20.8iT−289T2 |
| 19 | 1+1.50T+361T2 |
| 23 | 1+(1.00−0.578i)T+(264.5−458.i)T2 |
| 29 | 1+(15.7+9.08i)T+(420.5+728.i)T2 |
| 31 | 1+(25.6+44.4i)T+(−480.5+832.i)T2 |
| 37 | 1−7.93T+1.36e3T2 |
| 41 | 1+(21.8−12.6i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(19.3−33.5i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−59.6−34.4i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1−46.5iT−2.80e3T2 |
| 59 | 1+(89.1−51.4i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(44.1−76.4i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−11.3−19.6i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1−104.iT−5.04e3T2 |
| 73 | 1+75.2T+5.32e3T2 |
| 79 | 1+(−51.8+89.8i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(53.7+31.0i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1−1.95iT−7.92e3T2 |
| 97 | 1+(−59.2+102.i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85733369222221715752944393192, −10.19504846852235187081344063074, −8.920179527688782670562715014204, −7.78883779330419789963098271385, −7.50005355098402734638213927746, −6.00325392531820015225026556869, −5.63563136076709397318296211579, −4.29852454790744554785824223446, −2.76648720993658081120129798856, −1.45674825101403057450814225315,
0.05671497052860884516125591841, 2.20556674324524352417737642225, 3.53471684823887757337437459670, 4.84517637532556337948418045441, 5.30012726604039642451968128257, 6.53670025532777651554678777260, 7.45160377047705106175440696297, 8.719963498606355510801968166803, 9.474803956299502163672271152381, 10.26668110094478457831271369784