L(s) = 1 | − 13.8i·5-s + 3.46·7-s + 48i·11-s + 20.7i·13-s − 96·17-s + 40i·19-s − 110.·23-s − 66.9·25-s − 13.8i·29-s + 204.·31-s − 47.9i·35-s + 297. i·37-s + 288·41-s + 152i·43-s + 554.·47-s + ⋯ |
L(s) = 1 | − 1.23i·5-s + 0.187·7-s + 1.31i·11-s + 0.443i·13-s − 1.36·17-s + 0.482i·19-s − 1.00·23-s − 0.535·25-s − 0.0887i·29-s + 1.18·31-s − 0.231i·35-s + 1.32i·37-s + 1.09·41-s + 0.539i·43-s + 1.72·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.263682639\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.263682639\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 13.8iT - 125T^{2} \) |
| 7 | \( 1 - 3.46T + 343T^{2} \) |
| 11 | \( 1 - 48iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 20.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 96T + 4.91e3T^{2} \) |
| 19 | \( 1 - 40iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 110.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 13.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 204.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 297. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 288T + 6.89e4T^{2} \) |
| 43 | \( 1 - 152iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 554.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 180. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 480iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 755. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 848iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 886.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 538T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.00e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 432iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.34e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 590T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33975862892823934405088782214, −9.554826105863832336754782544830, −8.765054864115026961828501000179, −7.983363675675960617107866944439, −6.93297668198878902858378799583, −5.87630813846473721930957690686, −4.57288351966548682677435643443, −4.33797200267635410905716941495, −2.35807579429580258950831657477, −1.26034651133895404860356668779,
0.38825598537951438965242996898, 2.29572692098964820748320495240, 3.20450728824967372718284750350, 4.33429475238747031501053304008, 5.76969852119645143867107601574, 6.45688701946566511894266438976, 7.40107591493420919535028986484, 8.351160493966307508768928416231, 9.221655842316071477545785898266, 10.43285320840816177443204840015