Properties

Label 2-24e2-1.1-c5-0-34
Degree $2$
Conductor $576$
Sign $-1$
Analytic cond. $92.3810$
Root an. cond. $9.61150$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·5-s + 12·7-s − 448·11-s + 206·13-s + 1.95e3·17-s − 1.06e3·19-s + 3.71e3·23-s − 2.86e3·25-s − 4.08e3·29-s + 5.32e3·31-s − 192·35-s + 9.69e3·37-s − 9.12e3·41-s − 1.65e4·43-s − 1.42e4·47-s − 1.66e4·49-s + 2.17e4·53-s + 7.16e3·55-s + 3.16e4·59-s + 1.31e4·61-s − 3.29e3·65-s − 2.70e4·67-s + 9.72e3·71-s + 9.04e3·73-s − 5.37e3·77-s − 5.82e4·79-s − 8.63e4·83-s + ⋯
L(s)  = 1  − 0.286·5-s + 0.0925·7-s − 1.11·11-s + 0.338·13-s + 1.63·17-s − 0.676·19-s + 1.46·23-s − 0.918·25-s − 0.900·29-s + 0.995·31-s − 0.0264·35-s + 1.16·37-s − 0.847·41-s − 1.36·43-s − 0.938·47-s − 0.991·49-s + 1.06·53-s + 0.319·55-s + 1.18·59-s + 0.452·61-s − 0.0967·65-s − 0.736·67-s + 0.229·71-s + 0.198·73-s − 0.103·77-s − 1.05·79-s − 1.37·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(92.3810\)
Root analytic conductor: \(9.61150\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 576,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 16 T + p^{5} T^{2} \)
7 \( 1 - 12 T + p^{5} T^{2} \)
11 \( 1 + 448 T + p^{5} T^{2} \)
13 \( 1 - 206 T + p^{5} T^{2} \)
17 \( 1 - 1952 T + p^{5} T^{2} \)
19 \( 1 + 56 p T + p^{5} T^{2} \)
23 \( 1 - 3712 T + p^{5} T^{2} \)
29 \( 1 + 4080 T + p^{5} T^{2} \)
31 \( 1 - 5324 T + p^{5} T^{2} \)
37 \( 1 - 9690 T + p^{5} T^{2} \)
41 \( 1 + 9120 T + p^{5} T^{2} \)
43 \( 1 + 16552 T + p^{5} T^{2} \)
47 \( 1 + 14208 T + p^{5} T^{2} \)
53 \( 1 - 21776 T + p^{5} T^{2} \)
59 \( 1 - 31616 T + p^{5} T^{2} \)
61 \( 1 - 13154 T + p^{5} T^{2} \)
67 \( 1 + 27056 T + p^{5} T^{2} \)
71 \( 1 - 9728 T + p^{5} T^{2} \)
73 \( 1 - 9046 T + p^{5} T^{2} \)
79 \( 1 + 58292 T + p^{5} T^{2} \)
83 \( 1 + 86336 T + p^{5} T^{2} \)
89 \( 1 - 75072 T + p^{5} T^{2} \)
97 \( 1 - 76046 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.662333490612813340489015734822, −8.388891411015774946900020577589, −7.87853609377948525622618993640, −6.87463968205257545537847755605, −5.70862813239455495195646971365, −4.93149811380141609282892291844, −3.67811491515063946366183166335, −2.70828218054431257201377481104, −1.30251959570845401511266031712, 0, 1.30251959570845401511266031712, 2.70828218054431257201377481104, 3.67811491515063946366183166335, 4.93149811380141609282892291844, 5.70862813239455495195646971365, 6.87463968205257545537847755605, 7.87853609377948525622618993640, 8.388891411015774946900020577589, 9.662333490612813340489015734822

Graph of the $Z$-function along the critical line