Properties

Label 2-24e2-8.5-c5-0-17
Degree $2$
Conductor $576$
Sign $0.707 - 0.707i$
Analytic cond. $92.3810$
Root an. cond. $9.61150$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 474i·11-s − 1.91e3·17-s + 2.88e3i·19-s + 3.12e3·25-s + 1.39e4·41-s − 2.25e4i·43-s − 1.68e4·49-s + 4.84e4i·59-s + 6.71e4i·67-s + 5.04e4·73-s − 8.92e4i·83-s − 7.21e3·89-s + 8.54e4·97-s + 2.35e5i·107-s + 2.56e5·113-s + ⋯
L(s)  = 1  − 1.18i·11-s − 1.60·17-s + 1.83i·19-s + 25-s + 1.29·41-s − 1.85i·43-s − 49-s + 1.81i·59-s + 1.82i·67-s + 1.10·73-s − 1.42i·83-s − 0.0965·89-s + 0.922·97-s + 1.99i·107-s + 1.88·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $0.707 - 0.707i$
Analytic conductor: \(92.3810\)
Root analytic conductor: \(9.61150\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{576} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :5/2),\ 0.707 - 0.707i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.647840128\)
\(L(\frac12)\) \(\approx\) \(1.647840128\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 3.12e3T^{2} \)
7 \( 1 + 1.68e4T^{2} \)
11 \( 1 + 474iT - 1.61e5T^{2} \)
13 \( 1 - 3.71e5T^{2} \)
17 \( 1 + 1.91e3T + 1.41e6T^{2} \)
19 \( 1 - 2.88e3iT - 2.47e6T^{2} \)
23 \( 1 + 6.43e6T^{2} \)
29 \( 1 - 2.05e7T^{2} \)
31 \( 1 + 2.86e7T^{2} \)
37 \( 1 - 6.93e7T^{2} \)
41 \( 1 - 1.39e4T + 1.15e8T^{2} \)
43 \( 1 + 2.25e4iT - 1.47e8T^{2} \)
47 \( 1 + 2.29e8T^{2} \)
53 \( 1 - 4.18e8T^{2} \)
59 \( 1 - 4.84e4iT - 7.14e8T^{2} \)
61 \( 1 - 8.44e8T^{2} \)
67 \( 1 - 6.71e4iT - 1.35e9T^{2} \)
71 \( 1 + 1.80e9T^{2} \)
73 \( 1 - 5.04e4T + 2.07e9T^{2} \)
79 \( 1 + 3.07e9T^{2} \)
83 \( 1 + 8.92e4iT - 3.93e9T^{2} \)
89 \( 1 + 7.21e3T + 5.58e9T^{2} \)
97 \( 1 - 8.54e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19246956796602388367416061901, −8.962622542544598396955652352631, −8.470355453335215225436345369853, −7.38815623710341371733546409396, −6.33960870585120350772318373908, −5.59759594426830401548787868606, −4.35209774834034559752032163164, −3.38373989225849911340225673098, −2.16262725381901011422446842724, −0.830841563478261781526188252394, 0.46534604674158695228640039938, 1.94851529069146397671304478108, 2.90274307540926298276840629271, 4.45639616117755830161647138285, 4.90078512574374387183288917465, 6.46722335784339154647228188882, 6.98310914501954769083002476773, 8.062053743725241159143843129563, 9.141346741509120794417804653929, 9.620996767315007904391817734179

Graph of the $Z$-function along the critical line