L(s) = 1 | + 474i·11-s − 1.91e3·17-s − 2.88e3i·19-s + 3.12e3·25-s + 1.39e4·41-s + 2.25e4i·43-s − 1.68e4·49-s − 4.84e4i·59-s − 6.71e4i·67-s + 5.04e4·73-s + 8.92e4i·83-s − 7.21e3·89-s + 8.54e4·97-s − 2.35e5i·107-s + 2.56e5·113-s + ⋯ |
L(s) = 1 | + 1.18i·11-s − 1.60·17-s − 1.83i·19-s + 25-s + 1.29·41-s + 1.85i·43-s − 49-s − 1.81i·59-s − 1.82i·67-s + 1.10·73-s + 1.42i·83-s − 0.0965·89-s + 0.922·97-s − 1.99i·107-s + 1.88·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.647840128\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.647840128\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 3.12e3T^{2} \) |
| 7 | \( 1 + 1.68e4T^{2} \) |
| 11 | \( 1 - 474iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.91e3T + 1.41e6T^{2} \) |
| 19 | \( 1 + 2.88e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 6.43e6T^{2} \) |
| 29 | \( 1 - 2.05e7T^{2} \) |
| 31 | \( 1 + 2.86e7T^{2} \) |
| 37 | \( 1 - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.39e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 2.25e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 2.29e8T^{2} \) |
| 53 | \( 1 - 4.18e8T^{2} \) |
| 59 | \( 1 + 4.84e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 8.44e8T^{2} \) |
| 67 | \( 1 + 6.71e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 1.80e9T^{2} \) |
| 73 | \( 1 - 5.04e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 3.07e9T^{2} \) |
| 83 | \( 1 - 8.92e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 7.21e3T + 5.58e9T^{2} \) |
| 97 | \( 1 - 8.54e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.620996767315007904391817734179, −9.141346741509120794417804653929, −8.062053743725241159143843129563, −6.98310914501954769083002476773, −6.46722335784339154647228188882, −4.90078512574374387183288917465, −4.45639616117755830161647138285, −2.90274307540926298276840629271, −1.94851529069146397671304478108, −0.46534604674158695228640039938,
0.830841563478261781526188252394, 2.16262725381901011422446842724, 3.38373989225849911340225673098, 4.35209774834034559752032163164, 5.59759594426830401548787868606, 6.33960870585120350772318373908, 7.38815623710341371733546409396, 8.470355453335215225436345369853, 8.962622542544598396955652352631, 10.19246956796602388367416061901