Properties

Label 2-76e2-1.1-c1-0-57
Degree $2$
Conductor $5776$
Sign $1$
Analytic cond. $46.1215$
Root an. cond. $6.79128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 3·7-s + 9-s + 3·11-s + 4·13-s + 2·15-s + 5·17-s − 6·21-s − 4·25-s + 4·27-s − 2·29-s + 8·31-s − 6·33-s − 3·35-s + 10·37-s − 8·39-s − 6·41-s + 7·43-s − 45-s + 9·47-s + 2·49-s − 10·51-s + 8·53-s − 3·55-s + 14·59-s − 5·61-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 1.13·7-s + 1/3·9-s + 0.904·11-s + 1.10·13-s + 0.516·15-s + 1.21·17-s − 1.30·21-s − 4/5·25-s + 0.769·27-s − 0.371·29-s + 1.43·31-s − 1.04·33-s − 0.507·35-s + 1.64·37-s − 1.28·39-s − 0.937·41-s + 1.06·43-s − 0.149·45-s + 1.31·47-s + 2/7·49-s − 1.40·51-s + 1.09·53-s − 0.404·55-s + 1.82·59-s − 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5776\)    =    \(2^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(46.1215\)
Root analytic conductor: \(6.79128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5776,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.672737517\)
\(L(\frac12)\) \(\approx\) \(1.672737517\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 - 14 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 15 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.148060259363710086433322724847, −7.38601845396983265703380778176, −6.58341608756454848978175875806, −5.75508495262059909206416744964, −5.51991869338759908788687173901, −4.33693159410665846542938642673, −4.05153477392287557754730772390, −2.83555716155125599118268588753, −1.44011806260301581515132764673, −0.833864002051176659308197110715, 0.833864002051176659308197110715, 1.44011806260301581515132764673, 2.83555716155125599118268588753, 4.05153477392287557754730772390, 4.33693159410665846542938642673, 5.51991869338759908788687173901, 5.75508495262059909206416744964, 6.58341608756454848978175875806, 7.38601845396983265703380778176, 8.148060259363710086433322724847

Graph of the $Z$-function along the critical line