L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.623 + 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.623 + 0.781i)10-s + (−1.52 − 0.347i)13-s + (−0.222 + 0.974i)16-s + 1.80·17-s + (−0.222 + 0.974i)18-s + (0.900 − 0.433i)20-s + (−0.900 − 0.433i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (0.623 − 0.781i)32-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.623 + 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.623 + 0.781i)10-s + (−1.52 − 0.347i)13-s + (−0.222 + 0.974i)16-s + 1.80·17-s + (−0.222 + 0.974i)18-s + (0.900 − 0.433i)20-s + (−0.900 − 0.433i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (0.623 − 0.781i)32-s + ⋯ |
Λ(s)=(=(580s/2ΓC(s)L(s)(−0.00819+0.999i)Λ(1−s)
Λ(s)=(=(580s/2ΓC(s)L(s)(−0.00819+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
580
= 22⋅5⋅29
|
Sign: |
−0.00819+0.999i
|
Analytic conductor: |
0.289457 |
Root analytic conductor: |
0.538012 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ580(419,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 580, ( :0), −0.00819+0.999i)
|
Particular Values
L(21) |
≈ |
0.5916711086 |
L(21) |
≈ |
0.5916711086 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.900+0.433i)T |
| 5 | 1+(−0.222+0.974i)T |
| 29 | 1+(−0.222+0.974i)T |
good | 3 | 1+(0.222+0.974i)T2 |
| 7 | 1+(−0.222−0.974i)T2 |
| 11 | 1+(−0.900−0.433i)T2 |
| 13 | 1+(1.52+0.347i)T+(0.900+0.433i)T2 |
| 17 | 1−1.80T+T2 |
| 19 | 1+(−0.222+0.974i)T2 |
| 23 | 1+(0.623−0.781i)T2 |
| 31 | 1+(0.623+0.781i)T2 |
| 37 | 1+(−0.277−1.21i)T+(−0.900+0.433i)T2 |
| 41 | 1+1.56iT−T2 |
| 43 | 1+(−0.623+0.781i)T2 |
| 47 | 1+(0.900+0.433i)T2 |
| 53 | 1+(0.376−0.781i)T+(−0.623−0.781i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−0.678−0.541i)T+(0.222+0.974i)T2 |
| 67 | 1+(−0.900+0.433i)T2 |
| 71 | 1+(0.900+0.433i)T2 |
| 73 | 1+(−1.62+0.781i)T+(0.623−0.781i)T2 |
| 79 | 1+(−0.900+0.433i)T2 |
| 83 | 1+(−0.222+0.974i)T2 |
| 89 | 1+(0.846−1.75i)T+(−0.623−0.781i)T2 |
| 97 | 1+(−0.777−0.974i)T+(−0.222+0.974i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.38560838895886154265253898632, −9.710193262600687845961269645002, −9.202172644692105682967168649472, −8.127608055746079847358013667722, −7.50202937962206203170318903768, −6.24545276788656037600926472239, −5.17128142779901383393917760622, −3.80899876621016052401476391686, −2.58036098374940259624040257295, −0.974021854137760207987405661264,
1.99511065622949100237121090086, 3.04840576461301472614308537612, 4.99688619289435750714136435077, 5.79517032363286600231751767790, 6.99456366694300532253474970825, 7.52632301776874556676190379813, 8.337621867457639573405292453998, 9.726693322343953261540183537096, 9.988917598154381663673301888891, 10.93595239171206363730687515435