L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.623 + 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.623 + 0.781i)10-s + (−1.52 − 0.347i)13-s + (−0.222 + 0.974i)16-s + 1.80·17-s + (−0.222 + 0.974i)18-s + (0.900 − 0.433i)20-s + (−0.900 − 0.433i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (0.623 − 0.781i)32-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)2-s + (0.623 + 0.781i)4-s + (0.222 − 0.974i)5-s + (−0.222 − 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.623 + 0.781i)10-s + (−1.52 − 0.347i)13-s + (−0.222 + 0.974i)16-s + 1.80·17-s + (−0.222 + 0.974i)18-s + (0.900 − 0.433i)20-s + (−0.900 − 0.433i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (0.623 − 0.781i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00819 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00819 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5916711086\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5916711086\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.900 + 0.433i)T \) |
| 5 | \( 1 + (-0.222 + 0.974i)T \) |
| 29 | \( 1 + (-0.222 + 0.974i)T \) |
good | 3 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 7 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (1.52 + 0.347i)T + (0.900 + 0.433i)T^{2} \) |
| 17 | \( 1 - 1.80T + T^{2} \) |
| 19 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 23 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 37 | \( 1 + (-0.277 - 1.21i)T + (-0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + 1.56iT - T^{2} \) |
| 43 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (0.376 - 0.781i)T + (-0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.678 - 0.541i)T + (0.222 + 0.974i)T^{2} \) |
| 67 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (-1.62 + 0.781i)T + (0.623 - 0.781i)T^{2} \) |
| 79 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 83 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (0.846 - 1.75i)T + (-0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 + (-0.777 - 0.974i)T + (-0.222 + 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38560838895886154265253898632, −9.710193262600687845961269645002, −9.202172644692105682967168649472, −8.127608055746079847358013667722, −7.50202937962206203170318903768, −6.24545276788656037600926472239, −5.17128142779901383393917760622, −3.80899876621016052401476391686, −2.58036098374940259624040257295, −0.974021854137760207987405661264,
1.99511065622949100237121090086, 3.04840576461301472614308537612, 4.99688619289435750714136435077, 5.79517032363286600231751767790, 6.99456366694300532253474970825, 7.52632301776874556676190379813, 8.337621867457639573405292453998, 9.726693322343953261540183537096, 9.988917598154381663673301888891, 10.93595239171206363730687515435