L(s) = 1 | + 1.53i·2-s − 0.369·4-s + (−0.539 + 2.17i)5-s + 1.70i·7-s + 2.51i·8-s + (−3.34 − 0.829i)10-s + 2.53·11-s − i·13-s − 2.63·14-s − 4.60·16-s + 0.921i·17-s + 0.539·19-s + (0.199 − 0.800i)20-s + 3.90i·22-s − 2.82i·23-s + ⋯ |
L(s) = 1 | + 1.08i·2-s − 0.184·4-s + (−0.241 + 0.970i)5-s + 0.646i·7-s + 0.887i·8-s + (−1.05 − 0.262i)10-s + 0.765·11-s − 0.277i·13-s − 0.703·14-s − 1.15·16-s + 0.223i·17-s + 0.123·19-s + (0.0445 − 0.179i)20-s + 0.833i·22-s − 0.590i·23-s + ⋯ |
Λ(s)=(=(585s/2ΓC(s)L(s)(−0.970−0.241i)Λ(2−s)
Λ(s)=(=(585s/2ΓC(s+1/2)L(s)(−0.970−0.241i)Λ(1−s)
Degree: |
2 |
Conductor: |
585
= 32⋅5⋅13
|
Sign: |
−0.970−0.241i
|
Analytic conductor: |
4.67124 |
Root analytic conductor: |
2.16130 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ585(469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 585, ( :1/2), −0.970−0.241i)
|
Particular Values
L(1) |
≈ |
0.176265+1.44041i |
L(21) |
≈ |
0.176265+1.44041i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.539−2.17i)T |
| 13 | 1+iT |
good | 2 | 1−1.53iT−2T2 |
| 7 | 1−1.70iT−7T2 |
| 11 | 1−2.53T+11T2 |
| 17 | 1−0.921iT−17T2 |
| 19 | 1−0.539T+19T2 |
| 23 | 1+2.82iT−23T2 |
| 29 | 1+5.12T+29T2 |
| 31 | 1−0.879T+31T2 |
| 37 | 1−6.04iT−37T2 |
| 41 | 1+1.26T+41T2 |
| 43 | 1−6.43iT−43T2 |
| 47 | 1−5.70iT−47T2 |
| 53 | 1+8.49iT−53T2 |
| 59 | 1+4.72T+59T2 |
| 61 | 1−8.04T+61T2 |
| 67 | 1+7.86iT−67T2 |
| 71 | 1−14.4T+71T2 |
| 73 | 1+1.95iT−73T2 |
| 79 | 1+0.496T+79T2 |
| 83 | 1+8.63iT−83T2 |
| 89 | 1−12.8T+89T2 |
| 97 | 1+5.91iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.23902895022936293832419612021, −10.20155317221401667575613297191, −9.128745379504940493522064122520, −8.210603403300921664817738045380, −7.45377495889860093801350994752, −6.50986951935947122750394773900, −6.03667842235439888486501510765, −4.85239923400168241173715497957, −3.42719481109665123836523182031, −2.20532411060666277455594590042,
0.835257741726428431749845635275, 1.98745775113197713419034813024, 3.62283103810032928372709524319, 4.19878837782279341927976134552, 5.48330927181671786166445385368, 6.81497524399548867300307516372, 7.63214480166902447103490788314, 8.922253183504492193360567989715, 9.489511426959401974113260747784, 10.41047226916215726576675220516