L(s) = 1 | + 1.53i·2-s − 0.369·4-s + (−0.539 + 2.17i)5-s + 1.70i·7-s + 2.51i·8-s + (−3.34 − 0.829i)10-s + 2.53·11-s − i·13-s − 2.63·14-s − 4.60·16-s + 0.921i·17-s + 0.539·19-s + (0.199 − 0.800i)20-s + 3.90i·22-s − 2.82i·23-s + ⋯ |
L(s) = 1 | + 1.08i·2-s − 0.184·4-s + (−0.241 + 0.970i)5-s + 0.646i·7-s + 0.887i·8-s + (−1.05 − 0.262i)10-s + 0.765·11-s − 0.277i·13-s − 0.703·14-s − 1.15·16-s + 0.223i·17-s + 0.123·19-s + (0.0445 − 0.179i)20-s + 0.833i·22-s − 0.590i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.241i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.970 - 0.241i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.176265 + 1.44041i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.176265 + 1.44041i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.539 - 2.17i)T \) |
| 13 | \( 1 + iT \) |
good | 2 | \( 1 - 1.53iT - 2T^{2} \) |
| 7 | \( 1 - 1.70iT - 7T^{2} \) |
| 11 | \( 1 - 2.53T + 11T^{2} \) |
| 17 | \( 1 - 0.921iT - 17T^{2} \) |
| 19 | \( 1 - 0.539T + 19T^{2} \) |
| 23 | \( 1 + 2.82iT - 23T^{2} \) |
| 29 | \( 1 + 5.12T + 29T^{2} \) |
| 31 | \( 1 - 0.879T + 31T^{2} \) |
| 37 | \( 1 - 6.04iT - 37T^{2} \) |
| 41 | \( 1 + 1.26T + 41T^{2} \) |
| 43 | \( 1 - 6.43iT - 43T^{2} \) |
| 47 | \( 1 - 5.70iT - 47T^{2} \) |
| 53 | \( 1 + 8.49iT - 53T^{2} \) |
| 59 | \( 1 + 4.72T + 59T^{2} \) |
| 61 | \( 1 - 8.04T + 61T^{2} \) |
| 67 | \( 1 + 7.86iT - 67T^{2} \) |
| 71 | \( 1 - 14.4T + 71T^{2} \) |
| 73 | \( 1 + 1.95iT - 73T^{2} \) |
| 79 | \( 1 + 0.496T + 79T^{2} \) |
| 83 | \( 1 + 8.63iT - 83T^{2} \) |
| 89 | \( 1 - 12.8T + 89T^{2} \) |
| 97 | \( 1 + 5.91iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23902895022936293832419612021, −10.20155317221401667575613297191, −9.128745379504940493522064122520, −8.210603403300921664817738045380, −7.45377495889860093801350994752, −6.50986951935947122750394773900, −6.03667842235439888486501510765, −4.85239923400168241173715497957, −3.42719481109665123836523182031, −2.20532411060666277455594590042,
0.835257741726428431749845635275, 1.98745775113197713419034813024, 3.62283103810032928372709524319, 4.19878837782279341927976134552, 5.48330927181671786166445385368, 6.81497524399548867300307516372, 7.63214480166902447103490788314, 8.922253183504492193360567989715, 9.489511426959401974113260747784, 10.41047226916215726576675220516