L(s) = 1 | + (−0.313 − 0.542i)2-s + (0.803 − 1.39i)4-s + 5-s + (−2.21 + 3.83i)7-s − 2.26·8-s + (−0.313 − 0.542i)10-s + (−3.02 − 5.24i)11-s + (2.27 − 2.80i)13-s + 2.77·14-s + (−0.898 − 1.55i)16-s + (2.92 − 5.05i)17-s + (1.80 − 3.12i)19-s + (0.803 − 1.39i)20-s + (−1.89 + 3.28i)22-s + (−1.13 − 1.95i)23-s + ⋯ |
L(s) = 1 | + (−0.221 − 0.383i)2-s + (0.401 − 0.695i)4-s + 0.447·5-s + (−0.837 + 1.45i)7-s − 0.799·8-s + (−0.0991 − 0.171i)10-s + (−0.913 − 1.58i)11-s + (0.629 − 0.776i)13-s + 0.742·14-s + (−0.224 − 0.389i)16-s + (0.708 − 1.22i)17-s + (0.413 − 0.716i)19-s + (0.179 − 0.311i)20-s + (−0.404 + 0.701i)22-s + (−0.235 − 0.408i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.401 + 0.915i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 585 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.401 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.646413 - 0.989093i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.646413 - 0.989093i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (-2.27 + 2.80i)T \) |
good | 2 | \( 1 + (0.313 + 0.542i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (2.21 - 3.83i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.02 + 5.24i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.92 + 5.05i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.80 + 3.12i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.13 + 1.95i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.04 + 7.00i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.45T + 31T^{2} \) |
| 37 | \( 1 + (-0.898 - 1.55i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.99 - 6.92i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.24 - 5.61i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 3.22T + 47T^{2} \) |
| 53 | \( 1 - 10.0T + 53T^{2} \) |
| 59 | \( 1 + (1.56 - 2.70i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.22 + 2.12i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.16 - 3.75i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.24 - 7.35i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 0.819T + 73T^{2} \) |
| 79 | \( 1 + 8.42T + 79T^{2} \) |
| 83 | \( 1 - 2.35T + 83T^{2} \) |
| 89 | \( 1 + (0.386 + 0.669i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.16 + 5.47i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29320294575057747898372949032, −9.667747676795199349613147421695, −8.888005058639855975631408821325, −7.998141459004318348391460688191, −6.43595641229417738048622737914, −5.80445896143313874752251422607, −5.29528570803006147693409112089, −2.91354768050988957628691420427, −2.73814304254478478460589027174, −0.69843594285636750727066279333,
1.81544647822290738232505139816, 3.38912327447566268442115279191, 4.18099297643239660347377868047, 5.71821933856602873730027077643, 6.78314005838590830084075938010, 7.30081992354382502589821205358, 8.095528496786361692812514600842, 9.294588216893771859651578108735, 10.17846407797431878963646824252, 10.63748168655951209722069251234