L(s) = 1 | + 3-s + 2·5-s + 9-s + 2·11-s − 4·13-s + 2·15-s + 6·17-s + 8·19-s − 6·23-s − 25-s + 27-s − 10·29-s + 4·31-s + 2·33-s + 6·37-s − 4·39-s − 6·41-s + 4·43-s + 2·45-s + 8·47-s + 6·51-s + 2·53-s + 4·55-s + 8·57-s − 4·59-s − 8·61-s − 8·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.603·11-s − 1.10·13-s + 0.516·15-s + 1.45·17-s + 1.83·19-s − 1.25·23-s − 1/5·25-s + 0.192·27-s − 1.85·29-s + 0.718·31-s + 0.348·33-s + 0.986·37-s − 0.640·39-s − 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 0.840·51-s + 0.274·53-s + 0.539·55-s + 1.05·57-s − 0.520·59-s − 1.02·61-s − 0.992·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.108854613\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.108854613\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 2 T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 8 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 8 T + p T^{2} \) |
| 67 | \( 1 + 8 T + p T^{2} \) |
| 71 | \( 1 + 10 T + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 - 4 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36611036627762852540629826196, −9.583707885022017939372743886143, −9.362116383379991779782320758654, −7.85267446574644619430762393574, −7.37885248339416856965042328499, −6.01050196685275589688564643658, −5.28904041113039493355326669628, −3.90419895713753879761270516632, −2.76100450230404433527159597103, −1.51338087290757062643114219385,
1.51338087290757062643114219385, 2.76100450230404433527159597103, 3.90419895713753879761270516632, 5.28904041113039493355326669628, 6.01050196685275589688564643658, 7.37885248339416856965042328499, 7.85267446574644619430762393574, 9.362116383379991779782320758654, 9.583707885022017939372743886143, 10.36611036627762852540629826196