Properties

Label 2-588-1.1-c1-0-2
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $4.69520$
Root an. cond. $2.16684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 2·11-s − 4·13-s + 2·15-s + 6·17-s + 8·19-s − 6·23-s − 25-s + 27-s − 10·29-s + 4·31-s + 2·33-s + 6·37-s − 4·39-s − 6·41-s + 4·43-s + 2·45-s + 8·47-s + 6·51-s + 2·53-s + 4·55-s + 8·57-s − 4·59-s − 8·61-s − 8·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.603·11-s − 1.10·13-s + 0.516·15-s + 1.45·17-s + 1.83·19-s − 1.25·23-s − 1/5·25-s + 0.192·27-s − 1.85·29-s + 0.718·31-s + 0.348·33-s + 0.986·37-s − 0.640·39-s − 0.937·41-s + 0.609·43-s + 0.298·45-s + 1.16·47-s + 0.840·51-s + 0.274·53-s + 0.539·55-s + 1.05·57-s − 0.520·59-s − 1.02·61-s − 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(4.69520\)
Root analytic conductor: \(2.16684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.108854613\)
\(L(\frac12)\) \(\approx\) \(2.108854613\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.36611036627762852540629826196, −9.583707885022017939372743886143, −9.362116383379991779782320758654, −7.85267446574644619430762393574, −7.37885248339416856965042328499, −6.01050196685275589688564643658, −5.28904041113039493355326669628, −3.90419895713753879761270516632, −2.76100450230404433527159597103, −1.51338087290757062643114219385, 1.51338087290757062643114219385, 2.76100450230404433527159597103, 3.90419895713753879761270516632, 5.28904041113039493355326669628, 6.01050196685275589688564643658, 7.37885248339416856965042328499, 7.85267446574644619430762393574, 9.362116383379991779782320758654, 9.583707885022017939372743886143, 10.36611036627762852540629826196

Graph of the $Z$-function along the critical line