L(s) = 1 | + (1.38 − 0.300i)2-s + (−1.24 − 1.20i)3-s + (1.81 − 0.830i)4-s + 2.72i·5-s + (−2.08 − 1.29i)6-s + (2.26 − 1.69i)8-s + (0.0992 + 2.99i)9-s + (0.819 + 3.76i)10-s + 2.04·11-s + (−3.26 − 1.15i)12-s + 4.44·13-s + (3.28 − 3.39i)15-s + (2.62 − 3.02i)16-s + 0.660i·17-s + (1.03 + 4.11i)18-s − 2.93i·19-s + ⋯ |
L(s) = 1 | + (0.977 − 0.212i)2-s + (−0.718 − 0.695i)3-s + (0.909 − 0.415i)4-s + 1.21i·5-s + (−0.850 − 0.526i)6-s + (0.800 − 0.598i)8-s + (0.0330 + 0.999i)9-s + (0.259 + 1.19i)10-s + 0.615·11-s + (−0.942 − 0.334i)12-s + 1.23·13-s + (0.848 − 0.876i)15-s + (0.655 − 0.755i)16-s + 0.160i·17-s + (0.244 + 0.969i)18-s − 0.674i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 + 0.334i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.942 + 0.334i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.29247 - 0.394379i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.29247 - 0.394379i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 + 0.300i)T \) |
| 3 | \( 1 + (1.24 + 1.20i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 2.72iT - 5T^{2} \) |
| 11 | \( 1 - 2.04T + 11T^{2} \) |
| 13 | \( 1 - 4.44T + 13T^{2} \) |
| 17 | \( 1 - 0.660iT - 17T^{2} \) |
| 19 | \( 1 + 2.93iT - 19T^{2} \) |
| 23 | \( 1 - 1.04T + 23T^{2} \) |
| 29 | \( 1 - 2.06iT - 29T^{2} \) |
| 31 | \( 1 - 3.10iT - 31T^{2} \) |
| 37 | \( 1 + 9.52T + 37T^{2} \) |
| 41 | \( 1 + 7.85iT - 41T^{2} \) |
| 43 | \( 1 + 0.530iT - 43T^{2} \) |
| 47 | \( 1 - 1.04T + 47T^{2} \) |
| 53 | \( 1 - 10.5iT - 53T^{2} \) |
| 59 | \( 1 + 3.48T + 59T^{2} \) |
| 61 | \( 1 - 0.198T + 61T^{2} \) |
| 67 | \( 1 - 4.76iT - 67T^{2} \) |
| 71 | \( 1 + 5.52T + 71T^{2} \) |
| 73 | \( 1 - 3.03T + 73T^{2} \) |
| 79 | \( 1 + 10.9iT - 79T^{2} \) |
| 83 | \( 1 + 9.15T + 83T^{2} \) |
| 89 | \( 1 + 0.541iT - 89T^{2} \) |
| 97 | \( 1 - 6.91T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70695196942099242655402735994, −10.53464367542502790131139492012, −8.854625766111534348441352438642, −7.43828925154376613142843628501, −6.77632426792992936385971977882, −6.20358635903159970501427807591, −5.24232416504960752241496291706, −3.91175305111266218202578592569, −2.84200850840767786529063229693, −1.49699081777781396187069506090,
1.36495102300101663330535592059, 3.49637228791575362722761031792, 4.27350532883016236670092201058, 5.14161078791946538862875618621, 5.92376877634595825367659463108, 6.73161787230283413183885341422, 8.161321091727392012355702208547, 8.945649129114342041883205465811, 9.990139160092874133372879410502, 11.04034530852412427930311718002