L(s) = 1 | + (1.38 − 0.300i)2-s + (−1.24 − 1.20i)3-s + (1.81 − 0.830i)4-s + 2.72i·5-s + (−2.08 − 1.29i)6-s + (2.26 − 1.69i)8-s + (0.0992 + 2.99i)9-s + (0.819 + 3.76i)10-s + 2.04·11-s + (−3.26 − 1.15i)12-s + 4.44·13-s + (3.28 − 3.39i)15-s + (2.62 − 3.02i)16-s + 0.660i·17-s + (1.03 + 4.11i)18-s − 2.93i·19-s + ⋯ |
L(s) = 1 | + (0.977 − 0.212i)2-s + (−0.718 − 0.695i)3-s + (0.909 − 0.415i)4-s + 1.21i·5-s + (−0.850 − 0.526i)6-s + (0.800 − 0.598i)8-s + (0.0330 + 0.999i)9-s + (0.259 + 1.19i)10-s + 0.615·11-s + (−0.942 − 0.334i)12-s + 1.23·13-s + (0.848 − 0.876i)15-s + (0.655 − 0.755i)16-s + 0.160i·17-s + (0.244 + 0.969i)18-s − 0.674i·19-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.942+0.334i)Λ(2−s)
Λ(s)=(=(588s/2ΓC(s+1/2)L(s)(0.942+0.334i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.942+0.334i
|
Analytic conductor: |
4.69520 |
Root analytic conductor: |
2.16684 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(491,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :1/2), 0.942+0.334i)
|
Particular Values
L(1) |
≈ |
2.29247−0.394379i |
L(21) |
≈ |
2.29247−0.394379i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.38+0.300i)T |
| 3 | 1+(1.24+1.20i)T |
| 7 | 1 |
good | 5 | 1−2.72iT−5T2 |
| 11 | 1−2.04T+11T2 |
| 13 | 1−4.44T+13T2 |
| 17 | 1−0.660iT−17T2 |
| 19 | 1+2.93iT−19T2 |
| 23 | 1−1.04T+23T2 |
| 29 | 1−2.06iT−29T2 |
| 31 | 1−3.10iT−31T2 |
| 37 | 1+9.52T+37T2 |
| 41 | 1+7.85iT−41T2 |
| 43 | 1+0.530iT−43T2 |
| 47 | 1−1.04T+47T2 |
| 53 | 1−10.5iT−53T2 |
| 59 | 1+3.48T+59T2 |
| 61 | 1−0.198T+61T2 |
| 67 | 1−4.76iT−67T2 |
| 71 | 1+5.52T+71T2 |
| 73 | 1−3.03T+73T2 |
| 79 | 1+10.9iT−79T2 |
| 83 | 1+9.15T+83T2 |
| 89 | 1+0.541iT−89T2 |
| 97 | 1−6.91T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70695196942099242655402735994, −10.53464367542502790131139492012, −8.854625766111534348441352438642, −7.43828925154376613142843628501, −6.77632426792992936385971977882, −6.20358635903159970501427807591, −5.24232416504960752241496291706, −3.91175305111266218202578592569, −2.84200850840767786529063229693, −1.49699081777781396187069506090,
1.36495102300101663330535592059, 3.49637228791575362722761031792, 4.27350532883016236670092201058, 5.14161078791946538862875618621, 5.92376877634595825367659463108, 6.73161787230283413183885341422, 8.161321091727392012355702208547, 8.945649129114342041883205465811, 9.990139160092874133372879410502, 11.04034530852412427930311718002