L(s) = 1 | + (1.5 − 2.59i)3-s + (−3 − 5.19i)5-s + (−4.5 − 7.79i)9-s + (−18 + 31.1i)11-s + 62·13-s − 18·15-s + (−57 + 98.7i)17-s + (38 + 65.8i)19-s + (12 + 20.7i)23-s + (44.5 − 77.0i)25-s − 27·27-s + 54·29-s + (56 − 96.9i)31-s + (54 + 93.5i)33-s + (89 + 154. i)37-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.268 − 0.464i)5-s + (−0.166 − 0.288i)9-s + (−0.493 + 0.854i)11-s + 1.32·13-s − 0.309·15-s + (−0.813 + 1.40i)17-s + (0.458 + 0.794i)19-s + (0.108 + 0.188i)23-s + (0.355 − 0.616i)25-s − 0.192·27-s + 0.345·29-s + (0.324 − 0.561i)31-s + (0.284 + 0.493i)33-s + (0.395 + 0.684i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.999926933\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.999926933\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 + 2.59i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (3 + 5.19i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (18 - 31.1i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 62T + 2.19e3T^{2} \) |
| 17 | \( 1 + (57 - 98.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-38 - 65.8i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-12 - 20.7i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 54T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-56 + 96.9i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-89 - 154. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 378T + 6.89e4T^{2} \) |
| 43 | \( 1 + 172T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-96 - 166. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-201 + 348. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (198 - 342. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (127 + 219. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-506 + 876. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 840T + 3.57e5T^{2} \) |
| 73 | \( 1 + (445 - 770. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (40 + 69.2i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 108T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-819 - 1.41e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.01e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34174629931237729699295735139, −9.311068297514870732874332506337, −8.315435924673506184705901777386, −7.929220549369215699759890307832, −6.66408121993122525124579538940, −5.89686915307238029727336224857, −4.57114510849333380922032992217, −3.64526255287665601643947235567, −2.18963247758081236365328139228, −1.04513199505327350551756372369,
0.70400936715459271855989799689, 2.64186921580646056510437268567, 3.40958740376852595099529052475, 4.58893211114418084095480274218, 5.62368610635681146210563997563, 6.72164535406600568040459253198, 7.63643308295150064124814948595, 8.723159257847745853314694919191, 9.201642206615003951774789274010, 10.43865124935574997480352694096