L(s) = 1 | + (1.5 − 2.59i)3-s + (7 + 12.1i)5-s + (−4.5 − 7.79i)9-s + (−2 + 3.46i)11-s − 54·13-s + 42·15-s + (−7 + 12.1i)17-s + (46 + 79.6i)19-s + (76 + 131. i)23-s + (−35.5 + 61.4i)25-s − 27·27-s − 106·29-s + (−72 + 124. i)31-s + (6 + 10.3i)33-s + (−79 − 136. i)37-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.626 + 1.08i)5-s + (−0.166 − 0.288i)9-s + (−0.0548 + 0.0949i)11-s − 1.15·13-s + 0.722·15-s + (−0.0998 + 0.172i)17-s + (0.555 + 0.962i)19-s + (0.689 + 1.19i)23-s + (−0.284 + 0.491i)25-s − 0.192·27-s − 0.678·29-s + (−0.417 + 0.722i)31-s + (0.0316 + 0.0548i)33-s + (−0.351 − 0.607i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.597844587\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.597844587\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 + 2.59i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-7 - 12.1i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (2 - 3.46i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 54T + 2.19e3T^{2} \) |
| 17 | \( 1 + (7 - 12.1i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-46 - 79.6i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-76 - 131. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 106T + 2.43e4T^{2} \) |
| 31 | \( 1 + (72 - 124. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (79 + 136. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 390T + 6.89e4T^{2} \) |
| 43 | \( 1 + 508T + 7.95e4T^{2} \) |
| 47 | \( 1 + (264 + 457. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (303 - 524. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (182 - 315. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-339 - 587. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (422 - 730. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 8T + 3.57e5T^{2} \) |
| 73 | \( 1 + (211 - 365. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (192 + 332. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 548T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-597 - 1.03e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.50e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39544955051264773402122700203, −9.786344349011685064078420030413, −8.867858770056329748471689418240, −7.53940011912673906047771272385, −7.17063279344055630539057821341, −6.09617666685913897919284948215, −5.19963457000013538297070462692, −3.58666956563492461284180143393, −2.63513862147770226206191529248, −1.58933746615254908398879569823,
0.42471349382812744528065549461, 1.97505780060961362998975949531, 3.16370526022427972307693199779, 4.82077834610359064778152599675, 4.93896524381757473834629283242, 6.30271300452228773524402339449, 7.48546556745262627845330633035, 8.465088075967671604162130120000, 9.383253152398531299661583557134, 9.657721566231873130730005243020