L(s) = 1 | + (1.5 − 2.59i)3-s + (7 + 12.1i)5-s + (−4.5 − 7.79i)9-s + (−2 + 3.46i)11-s − 54·13-s + 42·15-s + (−7 + 12.1i)17-s + (46 + 79.6i)19-s + (76 + 131. i)23-s + (−35.5 + 61.4i)25-s − 27·27-s − 106·29-s + (−72 + 124. i)31-s + (6 + 10.3i)33-s + (−79 − 136. i)37-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.626 + 1.08i)5-s + (−0.166 − 0.288i)9-s + (−0.0548 + 0.0949i)11-s − 1.15·13-s + 0.722·15-s + (−0.0998 + 0.172i)17-s + (0.555 + 0.962i)19-s + (0.689 + 1.19i)23-s + (−0.284 + 0.491i)25-s − 0.192·27-s − 0.678·29-s + (−0.417 + 0.722i)31-s + (0.0316 + 0.0548i)33-s + (−0.351 − 0.607i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(−0.266−0.963i)Λ(4−s)
Λ(s)=(=(588s/2ΓC(s+3/2)L(s)(−0.266−0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
−0.266−0.963i
|
Analytic conductor: |
34.6931 |
Root analytic conductor: |
5.89008 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :3/2), −0.266−0.963i)
|
Particular Values
L(2) |
≈ |
1.597844587 |
L(21) |
≈ |
1.597844587 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.5+2.59i)T |
| 7 | 1 |
good | 5 | 1+(−7−12.1i)T+(−62.5+108.i)T2 |
| 11 | 1+(2−3.46i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+54T+2.19e3T2 |
| 17 | 1+(7−12.1i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(−46−79.6i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−76−131.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+106T+2.43e4T2 |
| 31 | 1+(72−124.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(79+136.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−390T+6.89e4T2 |
| 43 | 1+508T+7.95e4T2 |
| 47 | 1+(264+457.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(303−524.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(182−315.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−339−587.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(422−730.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+8T+3.57e5T2 |
| 73 | 1+(211−365.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(192+332.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−548T+5.71e5T2 |
| 89 | 1+(−597−1.03e3i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−1.50e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39544955051264773402122700203, −9.786344349011685064078420030413, −8.867858770056329748471689418240, −7.53940011912673906047771272385, −7.17063279344055630539057821341, −6.09617666685913897919284948215, −5.19963457000013538297070462692, −3.58666956563492461284180143393, −2.63513862147770226206191529248, −1.58933746615254908398879569823,
0.42471349382812744528065549461, 1.97505780060961362998975949531, 3.16370526022427972307693199779, 4.82077834610359064778152599675, 4.93896524381757473834629283242, 6.30271300452228773524402339449, 7.48546556745262627845330633035, 8.465088075967671604162130120000, 9.383253152398531299661583557134, 9.657721566231873130730005243020