Properties

Label 4-588e2-1.1-c5e2-0-8
Degree 44
Conductor 345744345744
Sign 11
Analytic cond. 8893.568893.56
Root an. cond. 9.711119.71111
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 34·5-s + 332·11-s + 2.05e3·13-s − 306·15-s + 922·17-s + 452·19-s + 3.77e3·23-s + 3.12e3·25-s − 729·27-s + 2.33e3·29-s − 9.79e3·31-s + 2.98e3·33-s − 2.39e3·37-s + 1.84e4·39-s + 1.44e4·41-s + 9.30e3·43-s + 2.46e4·47-s + 8.29e3·51-s − 1.11e3·53-s − 1.12e4·55-s + 4.06e3·57-s + 4.68e4·59-s − 9.76e3·61-s − 6.97e4·65-s + 2.62e4·67-s + 3.39e4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.608·5-s + 0.827·11-s + 3.36·13-s − 0.351·15-s + 0.773·17-s + 0.287·19-s + 1.48·23-s + 25-s − 0.192·27-s + 0.514·29-s − 1.83·31-s + 0.477·33-s − 0.287·37-s + 1.94·39-s + 1.34·41-s + 0.767·43-s + 1.62·47-s + 0.446·51-s − 0.0542·53-s − 0.503·55-s + 0.165·57-s + 1.75·59-s − 0.335·61-s − 2.04·65-s + 0.714·67-s + 0.859·69-s + ⋯

Functional equation

Λ(s)=(345744s/2ΓC(s)2L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(345744s/2ΓC(s+5/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 345744345744    =    2432742^{4} \cdot 3^{2} \cdot 7^{4}
Sign: 11
Analytic conductor: 8893.568893.56
Root analytic conductor: 9.711119.71111
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 345744, ( :5/2,5/2), 1)(4,\ 345744,\ (\ :5/2, 5/2),\ 1)

Particular Values

L(3)L(3) \approx 7.5169329537.516932953
L(12)L(\frac12) \approx 7.5169329537.516932953
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C2C_2 1p2T+p4T2 1 - p^{2} T + p^{4} T^{2}
7 1 1
good5C22C_2^2 1+34T1969T2+34p5T3+p10T4 1 + 34 T - 1969 T^{2} + 34 p^{5} T^{3} + p^{10} T^{4}
11C22C_2^2 1332T50827T2332p5T3+p10T4 1 - 332 T - 50827 T^{2} - 332 p^{5} T^{3} + p^{10} T^{4}
13C2C_2 (11026T+p5T2)2 ( 1 - 1026 T + p^{5} T^{2} )^{2}
17C22C_2^2 1922T569773T2922p5T3+p10T4 1 - 922 T - 569773 T^{2} - 922 p^{5} T^{3} + p^{10} T^{4}
19C22C_2^2 1452T2271795T2452p5T3+p10T4 1 - 452 T - 2271795 T^{2} - 452 p^{5} T^{3} + p^{10} T^{4}
23C22C_2^2 13776T+7821833T23776p5T3+p10T4 1 - 3776 T + 7821833 T^{2} - 3776 p^{5} T^{3} + p^{10} T^{4}
29C2C_2 (11166T+p5T2)2 ( 1 - 1166 T + p^{5} T^{2} )^{2}
31C22C_2^2 1+9792T+67254113T2+9792p5T3+p10T4 1 + 9792 T + 67254113 T^{2} + 9792 p^{5} T^{3} + p^{10} T^{4}
37C22C_2^2 1+2390T63631857T2+2390p5T3+p10T4 1 + 2390 T - 63631857 T^{2} + 2390 p^{5} T^{3} + p^{10} T^{4}
41C2C_2 (17230T+p5T2)2 ( 1 - 7230 T + p^{5} T^{2} )^{2}
43C2C_2 (14652T+p5T2)2 ( 1 - 4652 T + p^{5} T^{2} )^{2}
47C22C_2^2 124672T+379362577T224672p5T3+p10T4 1 - 24672 T + 379362577 T^{2} - 24672 p^{5} T^{3} + p^{10} T^{4}
53C22C_2^2 1+1110T416963393T2+1110p5T3+p10T4 1 + 1110 T - 416963393 T^{2} + 1110 p^{5} T^{3} + p^{10} T^{4}
59C22C_2^2 146892T+1483935365T246892p5T3+p10T4 1 - 46892 T + 1483935365 T^{2} - 46892 p^{5} T^{3} + p^{10} T^{4}
61C22C_2^2 1+9762T749299657T2+9762p5T3+p10T4 1 + 9762 T - 749299657 T^{2} + 9762 p^{5} T^{3} + p^{10} T^{4}
67C22C_2^2 126252T660957603T226252p5T3+p10T4 1 - 26252 T - 660957603 T^{2} - 26252 p^{5} T^{3} + p^{10} T^{4}
71C2C_2 (165440T+p5T2)2 ( 1 - 65440 T + p^{5} T^{2} )^{2}
73C22C_2^2 1+5606T2041644357T2+5606p5T3+p10T4 1 + 5606 T - 2041644357 T^{2} + 5606 p^{5} T^{3} + p^{10} T^{4}
79C22C_2^2 19840T2980230799T29840p5T3+p10T4 1 - 9840 T - 2980230799 T^{2} - 9840 p^{5} T^{3} + p^{10} T^{4}
83C2C_2 (1+61108T+p5T2)2 ( 1 + 61108 T + p^{5} T^{2} )^{2}
89C22C_2^2 1+62958T1620349685T2+62958p5T3+p10T4 1 + 62958 T - 1620349685 T^{2} + 62958 p^{5} T^{3} + p^{10} T^{4}
97C2C_2 (137838T+p5T2)2 ( 1 - 37838 T + p^{5} T^{2} )^{2}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.20416110408918513718029922972, −9.434824891745122419984065294869, −9.126141365531566457855009907065, −8.778074570163057877507852833064, −8.498396727634016014894141175242, −8.096891387053096270548866263471, −7.43608506073343121737789303452, −7.10274141324486456222338863923, −6.53475247485694311099989551014, −6.12644637395723930757046707358, −5.54117874671356423701372230269, −5.22168825446719444274542194233, −4.20894398792025486511339071699, −3.84632088306085466294044263234, −3.60211630900326925667652027265, −3.09821921420994812021126176586, −2.38595868765742204590771505893, −1.44321178541878259114200827147, −0.995619255154840588672015310130, −0.75944980829321898402086288270, 0.75944980829321898402086288270, 0.995619255154840588672015310130, 1.44321178541878259114200827147, 2.38595868765742204590771505893, 3.09821921420994812021126176586, 3.60211630900326925667652027265, 3.84632088306085466294044263234, 4.20894398792025486511339071699, 5.22168825446719444274542194233, 5.54117874671356423701372230269, 6.12644637395723930757046707358, 6.53475247485694311099989551014, 7.10274141324486456222338863923, 7.43608506073343121737789303452, 8.096891387053096270548866263471, 8.498396727634016014894141175242, 8.778074570163057877507852833064, 9.126141365531566457855009907065, 9.434824891745122419984065294869, 10.20416110408918513718029922972

Graph of the ZZ-function along the critical line