L(s) = 1 | + 9·3-s − 34·5-s + 332·11-s + 2.05e3·13-s − 306·15-s + 922·17-s + 452·19-s + 3.77e3·23-s + 3.12e3·25-s − 729·27-s + 2.33e3·29-s − 9.79e3·31-s + 2.98e3·33-s − 2.39e3·37-s + 1.84e4·39-s + 1.44e4·41-s + 9.30e3·43-s + 2.46e4·47-s + 8.29e3·51-s − 1.11e3·53-s − 1.12e4·55-s + 4.06e3·57-s + 4.68e4·59-s − 9.76e3·61-s − 6.97e4·65-s + 2.62e4·67-s + 3.39e4·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.608·5-s + 0.827·11-s + 3.36·13-s − 0.351·15-s + 0.773·17-s + 0.287·19-s + 1.48·23-s + 25-s − 0.192·27-s + 0.514·29-s − 1.83·31-s + 0.477·33-s − 0.287·37-s + 1.94·39-s + 1.34·41-s + 0.767·43-s + 1.62·47-s + 0.446·51-s − 0.0542·53-s − 0.503·55-s + 0.165·57-s + 1.75·59-s − 0.335·61-s − 2.04·65-s + 0.714·67-s + 0.859·69-s + ⋯ |
Λ(s)=(=(345744s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(345744s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
345744
= 24⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
8893.56 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 345744, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
7.516932953 |
L(21) |
≈ |
7.516932953 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−p2T+p4T2 |
| 7 | | 1 |
good | 5 | C22 | 1+34T−1969T2+34p5T3+p10T4 |
| 11 | C22 | 1−332T−50827T2−332p5T3+p10T4 |
| 13 | C2 | (1−1026T+p5T2)2 |
| 17 | C22 | 1−922T−569773T2−922p5T3+p10T4 |
| 19 | C22 | 1−452T−2271795T2−452p5T3+p10T4 |
| 23 | C22 | 1−3776T+7821833T2−3776p5T3+p10T4 |
| 29 | C2 | (1−1166T+p5T2)2 |
| 31 | C22 | 1+9792T+67254113T2+9792p5T3+p10T4 |
| 37 | C22 | 1+2390T−63631857T2+2390p5T3+p10T4 |
| 41 | C2 | (1−7230T+p5T2)2 |
| 43 | C2 | (1−4652T+p5T2)2 |
| 47 | C22 | 1−24672T+379362577T2−24672p5T3+p10T4 |
| 53 | C22 | 1+1110T−416963393T2+1110p5T3+p10T4 |
| 59 | C22 | 1−46892T+1483935365T2−46892p5T3+p10T4 |
| 61 | C22 | 1+9762T−749299657T2+9762p5T3+p10T4 |
| 67 | C22 | 1−26252T−660957603T2−26252p5T3+p10T4 |
| 71 | C2 | (1−65440T+p5T2)2 |
| 73 | C22 | 1+5606T−2041644357T2+5606p5T3+p10T4 |
| 79 | C22 | 1−9840T−2980230799T2−9840p5T3+p10T4 |
| 83 | C2 | (1+61108T+p5T2)2 |
| 89 | C22 | 1+62958T−1620349685T2+62958p5T3+p10T4 |
| 97 | C2 | (1−37838T+p5T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20416110408918513718029922972, −9.434824891745122419984065294869, −9.126141365531566457855009907065, −8.778074570163057877507852833064, −8.498396727634016014894141175242, −8.096891387053096270548866263471, −7.43608506073343121737789303452, −7.10274141324486456222338863923, −6.53475247485694311099989551014, −6.12644637395723930757046707358, −5.54117874671356423701372230269, −5.22168825446719444274542194233, −4.20894398792025486511339071699, −3.84632088306085466294044263234, −3.60211630900326925667652027265, −3.09821921420994812021126176586, −2.38595868765742204590771505893, −1.44321178541878259114200827147, −0.995619255154840588672015310130, −0.75944980829321898402086288270,
0.75944980829321898402086288270, 0.995619255154840588672015310130, 1.44321178541878259114200827147, 2.38595868765742204590771505893, 3.09821921420994812021126176586, 3.60211630900326925667652027265, 3.84632088306085466294044263234, 4.20894398792025486511339071699, 5.22168825446719444274542194233, 5.54117874671356423701372230269, 6.12644637395723930757046707358, 6.53475247485694311099989551014, 7.10274141324486456222338863923, 7.43608506073343121737789303452, 8.096891387053096270548866263471, 8.498396727634016014894141175242, 8.778074570163057877507852833064, 9.126141365531566457855009907065, 9.434824891745122419984065294869, 10.20416110408918513718029922972