L(s) = 1 | + (−4.5 − 7.79i)3-s + (14.2 − 24.6i)5-s + (−40.5 + 70.1i)9-s + (−212. − 367. i)11-s + 508.·13-s − 255.·15-s + (269. + 467. i)17-s + (−1.30e3 + 2.25e3i)19-s + (−130. + 226. i)23-s + (1.15e3 + 2.00e3i)25-s + 729·27-s + 6.87e3·29-s + (−2.84e3 − 4.92e3i)31-s + (−1.90e3 + 3.30e3i)33-s + (−2.45e3 + 4.25e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.254 − 0.440i)5-s + (−0.166 + 0.288i)9-s + (−0.528 − 0.915i)11-s + 0.834·13-s − 0.293·15-s + (0.226 + 0.392i)17-s + (−0.827 + 1.43i)19-s + (−0.0514 + 0.0891i)23-s + (0.370 + 0.642i)25-s + 0.192·27-s + 1.51·29-s + (−0.531 − 0.920i)31-s + (−0.305 + 0.528i)33-s + (−0.294 + 0.510i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.820082744\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.820082744\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-14.2 + 24.6i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (212. + 367. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 508.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-269. - 467. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.30e3 - 2.25e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (130. - 226. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 6.87e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (2.84e3 + 4.92e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (2.45e3 - 4.25e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 5.72e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.73e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-5.07e3 + 8.78e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.55e4 - 2.70e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.94e4 - 3.36e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (6.82e3 - 1.18e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-1.53e4 - 2.66e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 4.56e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.08e4 + 1.88e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (1.61e4 - 2.79e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 4.66e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-3.18e4 + 5.52e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.15e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09946153411825530877561109034, −8.658004138272186411748064485891, −8.361999266497959746342997473491, −7.21734164641702694942047517564, −6.00483429611358479369870261313, −5.66241305276809459412793061647, −4.28878859519690641187778836905, −3.12551797117269570882358658605, −1.74252898555037720374066540637, −0.799949472018642118560549603030,
0.56606536666878688454180978338, 2.15064019129525329310418272736, 3.18540312261477354782218810740, 4.46893756428488041674887058583, 5.18597431620250370995910690607, 6.43347697060738350784100460416, 7.01476631882102888865752676077, 8.318144651664217420308685263858, 9.106243368692240533309244670116, 10.16568717877110038269241668142