L(s) = 1 | + (−4.5 − 7.79i)3-s + (14.2 − 24.6i)5-s + (−40.5 + 70.1i)9-s + (−212. − 367. i)11-s + 508.·13-s − 255.·15-s + (269. + 467. i)17-s + (−1.30e3 + 2.25e3i)19-s + (−130. + 226. i)23-s + (1.15e3 + 2.00e3i)25-s + 729·27-s + 6.87e3·29-s + (−2.84e3 − 4.92e3i)31-s + (−1.90e3 + 3.30e3i)33-s + (−2.45e3 + 4.25e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.254 − 0.440i)5-s + (−0.166 + 0.288i)9-s + (−0.528 − 0.915i)11-s + 0.834·13-s − 0.293·15-s + (0.226 + 0.392i)17-s + (−0.827 + 1.43i)19-s + (−0.0514 + 0.0891i)23-s + (0.370 + 0.642i)25-s + 0.192·27-s + 1.51·29-s + (−0.531 − 0.920i)31-s + (−0.305 + 0.528i)33-s + (−0.294 + 0.510i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.991+0.126i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.991+0.126i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), 0.991+0.126i)
|
Particular Values
L(3) |
≈ |
1.820082744 |
L(21) |
≈ |
1.820082744 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(−14.2+24.6i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(212.+367.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−508.T+3.71e5T2 |
| 17 | 1+(−269.−467.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(1.30e3−2.25e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(130.−226.i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−6.87e3T+2.05e7T2 |
| 31 | 1+(2.84e3+4.92e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(2.45e3−4.25e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+5.72e3T+1.15e8T2 |
| 43 | 1+1.73e3T+1.47e8T2 |
| 47 | 1+(−5.07e3+8.78e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−1.55e4−2.70e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−1.94e4−3.36e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(6.82e3−1.18e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−1.53e4−2.66e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+4.56e4T+1.80e9T2 |
| 73 | 1+(1.08e4+1.88e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(1.61e4−2.79e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+4.66e4T+3.93e9T2 |
| 89 | 1+(−3.18e4+5.52e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−1.15e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09946153411825530877561109034, −8.658004138272186411748064485891, −8.361999266497959746342997473491, −7.21734164641702694942047517564, −6.00483429611358479369870261313, −5.66241305276809459412793061647, −4.28878859519690641187778836905, −3.12551797117269570882358658605, −1.74252898555037720374066540637, −0.799949472018642118560549603030,
0.56606536666878688454180978338, 2.15064019129525329310418272736, 3.18540312261477354782218810740, 4.46893756428488041674887058583, 5.18597431620250370995910690607, 6.43347697060738350784100460416, 7.01476631882102888865752676077, 8.318144651664217420308685263858, 9.106243368692240533309244670116, 10.16568717877110038269241668142