Properties

Label 8-588e4-1.1-c5e4-0-3
Degree $8$
Conductor $119538913536$
Sign $1$
Analytic cond. $7.90954\times 10^{7}$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18·3-s − 6·5-s + 81·9-s + 90·11-s − 1.53e3·13-s + 108·15-s + 1.92e3·17-s + 2.24e3·19-s − 6.35e3·23-s + 690·25-s + 1.45e3·27-s + 2.11e4·29-s − 3.31e3·31-s − 1.62e3·33-s − 2.10e3·37-s + 2.76e4·39-s − 2.53e3·41-s − 1.15e4·43-s − 486·45-s + 1.56e4·47-s − 3.46e4·51-s − 1.65e4·53-s − 540·55-s − 4.04e4·57-s − 1.31e4·59-s − 5.79e3·61-s + 9.21e3·65-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.107·5-s + 1/3·9-s + 0.224·11-s − 2.52·13-s + 0.123·15-s + 1.61·17-s + 1.42·19-s − 2.50·23-s + 0.220·25-s + 0.384·27-s + 4.66·29-s − 0.618·31-s − 0.258·33-s − 0.252·37-s + 2.91·39-s − 0.235·41-s − 0.951·43-s − 0.0357·45-s + 1.03·47-s − 1.86·51-s − 0.807·53-s − 0.0240·55-s − 1.64·57-s − 0.491·59-s − 0.199·61-s + 0.270·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(7.90954\times 10^{7}\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{4} \cdot 7^{8} ,\ ( \ : 5/2, 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(0.5979498803\)
\(L(\frac12)\) \(\approx\) \(0.5979498803\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p^{2} T + p^{4} T^{2} )^{2} \)
7 \( 1 \)
good5$D_4\times C_2$ \( 1 + 6 T - 654 T^{2} - 6672 p T^{3} - 376081 p^{2} T^{4} - 6672 p^{6} T^{5} - 654 p^{10} T^{6} + 6 p^{15} T^{7} + p^{20} T^{8} \)
11$D_4\times C_2$ \( 1 - 90 T - 43146 T^{2} + 24377040 T^{3} - 24615785185 T^{4} + 24377040 p^{5} T^{5} - 43146 p^{10} T^{6} - 90 p^{15} T^{7} + p^{20} T^{8} \)
13$D_{4}$ \( ( 1 + 768 T + 689558 T^{2} + 768 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 1926 T - 52038 T^{2} - 1775386800 T^{3} + 6866068206815 T^{4} - 1775386800 p^{5} T^{5} - 52038 p^{10} T^{6} - 1926 p^{15} T^{7} + p^{20} T^{8} \)
19$D_4\times C_2$ \( 1 - 2248 T + 2045674 T^{2} + 4370939264 T^{3} - 9597001149797 T^{4} + 4370939264 p^{5} T^{5} + 2045674 p^{10} T^{6} - 2248 p^{15} T^{7} + p^{20} T^{8} \)
23$D_4\times C_2$ \( 1 + 6354 T + 17412870 T^{2} + 64097627040 T^{3} + 225899059481879 T^{4} + 64097627040 p^{5} T^{5} + 17412870 p^{10} T^{6} + 6354 p^{15} T^{7} + p^{20} T^{8} \)
29$D_{4}$ \( ( 1 - 10572 T + 60053694 T^{2} - 10572 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 3312 T - 20161598 T^{2} - 86533816320 T^{3} - 164535742920381 T^{4} - 86533816320 p^{5} T^{5} - 20161598 p^{10} T^{6} + 3312 p^{15} T^{7} + p^{20} T^{8} \)
37$D_4\times C_2$ \( 1 + 2104 T - 10065302 T^{2} - 261307954784 T^{3} - 4905535826642837 T^{4} - 261307954784 p^{5} T^{5} - 10065302 p^{10} T^{6} + 2104 p^{15} T^{7} + p^{20} T^{8} \)
41$D_{4}$ \( ( 1 + 1266 T + 226048450 T^{2} + 1266 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 5768 T - 18440058 T^{2} + 5768 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 15612 T - 129736270 T^{2} + 1330442150400 T^{3} + 30982015974170739 T^{4} + 1330442150400 p^{5} T^{5} - 129736270 p^{10} T^{6} - 15612 p^{15} T^{7} + p^{20} T^{8} \)
53$D_4\times C_2$ \( 1 + 16512 T - 326970214 T^{2} - 3909622657536 T^{3} + 70632917811042123 T^{4} - 3909622657536 p^{5} T^{5} - 326970214 p^{10} T^{6} + 16512 p^{15} T^{7} + p^{20} T^{8} \)
59$D_4\times C_2$ \( 1 + 13140 T - 369558 p^{2} T^{2} + 384245136000 T^{3} + 1494391243648374203 T^{4} + 384245136000 p^{5} T^{5} - 369558 p^{12} T^{6} + 13140 p^{15} T^{7} + p^{20} T^{8} \)
61$D_4\times C_2$ \( 1 + 5796 T - 1275860366 T^{2} - 2200965041520 T^{3} + 972953775501959307 T^{4} - 2200965041520 p^{5} T^{5} - 1275860366 p^{10} T^{6} + 5796 p^{15} T^{7} + p^{20} T^{8} \)
67$D_4\times C_2$ \( 1 - 56116 T + 850173514 T^{2} + 22525987751552 T^{3} - 789760835217853877 T^{4} + 22525987751552 p^{5} T^{5} + 850173514 p^{10} T^{6} - 56116 p^{15} T^{7} + p^{20} T^{8} \)
71$D_{4}$ \( ( 1 - 11022 T - 822078402 T^{2} - 11022 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 + 85384 T + 1490284450 T^{2} + 141225120630880 T^{3} + 14230455000486300979 T^{4} + 141225120630880 p^{5} T^{5} + 1490284450 p^{10} T^{6} + 85384 p^{15} T^{7} + p^{20} T^{8} \)
79$D_4\times C_2$ \( 1 - 19620 T - 5831522702 T^{2} - 1223391444480 T^{3} + 27991691518342215603 T^{4} - 1223391444480 p^{5} T^{5} - 5831522702 p^{10} T^{6} - 19620 p^{15} T^{7} + p^{20} T^{8} \)
83$D_{4}$ \( ( 1 - 44424 T + 7801188630 T^{2} - 44424 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 211218 T + 23178254114 T^{2} - 2168505612203616 T^{3} + \)\(17\!\cdots\!23\)\( T^{4} - 2168505612203616 p^{5} T^{5} + 23178254114 p^{10} T^{6} - 211218 p^{15} T^{7} + p^{20} T^{8} \)
97$D_{4}$ \( ( 1 + 44864 T + 3170652414 T^{2} + 44864 p^{5} T^{3} + p^{10} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.88635258917440491606022157397, −6.56699996784460935574517593423, −6.39416791247236457151031355143, −6.21697453981815996563972831298, −5.89751611567900320596305456292, −5.78060334620223628473196694089, −5.21062515158322478743735948884, −5.19916182954355879991555913375, −5.06077940167807153813253860129, −4.71910719493133869426373524742, −4.64378193596545868062640878542, −4.29943828324176421824393290194, −3.82673394934010298392069978200, −3.64750509943567458252656660484, −3.33629306565436695452286483610, −3.02498987225598824498461885088, −2.62448035244952068694321690546, −2.49632413113200367686310444966, −2.33762802900758455706464986772, −1.59804112156089165665430964074, −1.55446426082211897692312589327, −1.02062251940713316132239054433, −0.799937453075725890137391300786, −0.52645699331340661634076803105, −0.11862014060307787771893686478, 0.11862014060307787771893686478, 0.52645699331340661634076803105, 0.799937453075725890137391300786, 1.02062251940713316132239054433, 1.55446426082211897692312589327, 1.59804112156089165665430964074, 2.33762802900758455706464986772, 2.49632413113200367686310444966, 2.62448035244952068694321690546, 3.02498987225598824498461885088, 3.33629306565436695452286483610, 3.64750509943567458252656660484, 3.82673394934010298392069978200, 4.29943828324176421824393290194, 4.64378193596545868062640878542, 4.71910719493133869426373524742, 5.06077940167807153813253860129, 5.19916182954355879991555913375, 5.21062515158322478743735948884, 5.78060334620223628473196694089, 5.89751611567900320596305456292, 6.21697453981815996563972831298, 6.39416791247236457151031355143, 6.56699996784460935574517593423, 6.88635258917440491606022157397

Graph of the $Z$-function along the critical line