Properties

Label 2-588-1.1-c7-0-38
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $183.682$
Root an. cond. $13.5529$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s − 100·5-s + 729·9-s + 2.77e3·11-s + 3.29e3·13-s − 2.70e3·15-s − 5.90e3·17-s − 6.64e3·19-s + 1.98e3·23-s − 6.81e4·25-s + 1.96e4·27-s − 2.08e5·29-s + 1.17e5·31-s + 7.48e4·33-s − 3.35e5·37-s + 8.89e4·39-s + 2.65e5·41-s − 9.32e4·43-s − 7.29e4·45-s + 6.57e5·47-s − 1.59e5·51-s − 6.08e5·53-s − 2.77e5·55-s − 1.79e5·57-s + 5.36e5·59-s + 1.79e6·61-s − 3.29e5·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.357·5-s + 1/3·9-s + 0.628·11-s + 0.415·13-s − 0.206·15-s − 0.291·17-s − 0.222·19-s + 0.0339·23-s − 0.871·25-s + 0.192·27-s − 1.58·29-s + 0.710·31-s + 0.362·33-s − 1.08·37-s + 0.240·39-s + 0.601·41-s − 0.178·43-s − 0.119·45-s + 0.923·47-s − 0.168·51-s − 0.561·53-s − 0.224·55-s − 0.128·57-s + 0.339·59-s + 1.01·61-s − 0.148·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(183.682\)
Root analytic conductor: \(13.5529\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{3} T \)
7 \( 1 \)
good5 \( 1 + 4 p^{2} T + p^{7} T^{2} \)
11 \( 1 - 2774 T + p^{7} T^{2} \)
13 \( 1 - 3294 T + p^{7} T^{2} \)
17 \( 1 + 5900 T + p^{7} T^{2} \)
19 \( 1 + 6644 T + p^{7} T^{2} \)
23 \( 1 - 1982 T + p^{7} T^{2} \)
29 \( 1 + 208106 T + p^{7} T^{2} \)
31 \( 1 - 117792 T + p^{7} T^{2} \)
37 \( 1 + 335686 T + p^{7} T^{2} \)
41 \( 1 - 265488 T + p^{7} T^{2} \)
43 \( 1 + 93292 T + p^{7} T^{2} \)
47 \( 1 - 657516 T + p^{7} T^{2} \)
53 \( 1 + 608718 T + p^{7} T^{2} \)
59 \( 1 - 536120 T + p^{7} T^{2} \)
61 \( 1 - 1797090 T + p^{7} T^{2} \)
67 \( 1 - 2123176 T + p^{7} T^{2} \)
71 \( 1 + 1191214 T + p^{7} T^{2} \)
73 \( 1 + 1056430 T + p^{7} T^{2} \)
79 \( 1 - 998484 T + p^{7} T^{2} \)
83 \( 1 + 3898004 T + p^{7} T^{2} \)
89 \( 1 - 4622352 T + p^{7} T^{2} \)
97 \( 1 + 15287710 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.071159579036313765488612344936, −8.307326242178764360213311089958, −7.43797041371714104235115889488, −6.55420609023195689836301393387, −5.48907396589703104925563490100, −4.19082152679254813852217824035, −3.59227678257679080343846517684, −2.34220061013318116921341156866, −1.31369187873096679021517084345, 0, 1.31369187873096679021517084345, 2.34220061013318116921341156866, 3.59227678257679080343846517684, 4.19082152679254813852217824035, 5.48907396589703104925563490100, 6.55420609023195689836301393387, 7.43797041371714104235115889488, 8.307326242178764360213311089958, 9.071159579036313765488612344936

Graph of the $Z$-function along the critical line