L(s) = 1 | + 27·3-s − 100·5-s + 729·9-s + 2.77e3·11-s + 3.29e3·13-s − 2.70e3·15-s − 5.90e3·17-s − 6.64e3·19-s + 1.98e3·23-s − 6.81e4·25-s + 1.96e4·27-s − 2.08e5·29-s + 1.17e5·31-s + 7.48e4·33-s − 3.35e5·37-s + 8.89e4·39-s + 2.65e5·41-s − 9.32e4·43-s − 7.29e4·45-s + 6.57e5·47-s − 1.59e5·51-s − 6.08e5·53-s − 2.77e5·55-s − 1.79e5·57-s + 5.36e5·59-s + 1.79e6·61-s − 3.29e5·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.357·5-s + 1/3·9-s + 0.628·11-s + 0.415·13-s − 0.206·15-s − 0.291·17-s − 0.222·19-s + 0.0339·23-s − 0.871·25-s + 0.192·27-s − 1.58·29-s + 0.710·31-s + 0.362·33-s − 1.08·37-s + 0.240·39-s + 0.601·41-s − 0.178·43-s − 0.119·45-s + 0.923·47-s − 0.168·51-s − 0.561·53-s − 0.224·55-s − 0.128·57-s + 0.339·59-s + 1.01·61-s − 0.148·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p^{3} T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 4 p^{2} T + p^{7} T^{2} \) |
| 11 | \( 1 - 2774 T + p^{7} T^{2} \) |
| 13 | \( 1 - 3294 T + p^{7} T^{2} \) |
| 17 | \( 1 + 5900 T + p^{7} T^{2} \) |
| 19 | \( 1 + 6644 T + p^{7} T^{2} \) |
| 23 | \( 1 - 1982 T + p^{7} T^{2} \) |
| 29 | \( 1 + 208106 T + p^{7} T^{2} \) |
| 31 | \( 1 - 117792 T + p^{7} T^{2} \) |
| 37 | \( 1 + 335686 T + p^{7} T^{2} \) |
| 41 | \( 1 - 265488 T + p^{7} T^{2} \) |
| 43 | \( 1 + 93292 T + p^{7} T^{2} \) |
| 47 | \( 1 - 657516 T + p^{7} T^{2} \) |
| 53 | \( 1 + 608718 T + p^{7} T^{2} \) |
| 59 | \( 1 - 536120 T + p^{7} T^{2} \) |
| 61 | \( 1 - 1797090 T + p^{7} T^{2} \) |
| 67 | \( 1 - 2123176 T + p^{7} T^{2} \) |
| 71 | \( 1 + 1191214 T + p^{7} T^{2} \) |
| 73 | \( 1 + 1056430 T + p^{7} T^{2} \) |
| 79 | \( 1 - 998484 T + p^{7} T^{2} \) |
| 83 | \( 1 + 3898004 T + p^{7} T^{2} \) |
| 89 | \( 1 - 4622352 T + p^{7} T^{2} \) |
| 97 | \( 1 + 15287710 T + p^{7} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.071159579036313765488612344936, −8.307326242178764360213311089958, −7.43797041371714104235115889488, −6.55420609023195689836301393387, −5.48907396589703104925563490100, −4.19082152679254813852217824035, −3.59227678257679080343846517684, −2.34220061013318116921341156866, −1.31369187873096679021517084345, 0,
1.31369187873096679021517084345, 2.34220061013318116921341156866, 3.59227678257679080343846517684, 4.19082152679254813852217824035, 5.48907396589703104925563490100, 6.55420609023195689836301393387, 7.43797041371714104235115889488, 8.307326242178764360213311089958, 9.071159579036313765488612344936