L(s) = 1 | + 27·3-s − 100·5-s + 729·9-s + 2.77e3·11-s + 3.29e3·13-s − 2.70e3·15-s − 5.90e3·17-s − 6.64e3·19-s + 1.98e3·23-s − 6.81e4·25-s + 1.96e4·27-s − 2.08e5·29-s + 1.17e5·31-s + 7.48e4·33-s − 3.35e5·37-s + 8.89e4·39-s + 2.65e5·41-s − 9.32e4·43-s − 7.29e4·45-s + 6.57e5·47-s − 1.59e5·51-s − 6.08e5·53-s − 2.77e5·55-s − 1.79e5·57-s + 5.36e5·59-s + 1.79e6·61-s − 3.29e5·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.357·5-s + 1/3·9-s + 0.628·11-s + 0.415·13-s − 0.206·15-s − 0.291·17-s − 0.222·19-s + 0.0339·23-s − 0.871·25-s + 0.192·27-s − 1.58·29-s + 0.710·31-s + 0.362·33-s − 1.08·37-s + 0.240·39-s + 0.601·41-s − 0.178·43-s − 0.119·45-s + 0.923·47-s − 0.168·51-s − 0.561·53-s − 0.224·55-s − 0.128·57-s + 0.339·59-s + 1.01·61-s − 0.148·65-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(588s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−p3T |
| 7 | 1 |
good | 5 | 1+4p2T+p7T2 |
| 11 | 1−2774T+p7T2 |
| 13 | 1−3294T+p7T2 |
| 17 | 1+5900T+p7T2 |
| 19 | 1+6644T+p7T2 |
| 23 | 1−1982T+p7T2 |
| 29 | 1+208106T+p7T2 |
| 31 | 1−117792T+p7T2 |
| 37 | 1+335686T+p7T2 |
| 41 | 1−265488T+p7T2 |
| 43 | 1+93292T+p7T2 |
| 47 | 1−657516T+p7T2 |
| 53 | 1+608718T+p7T2 |
| 59 | 1−536120T+p7T2 |
| 61 | 1−1797090T+p7T2 |
| 67 | 1−2123176T+p7T2 |
| 71 | 1+1191214T+p7T2 |
| 73 | 1+1056430T+p7T2 |
| 79 | 1−998484T+p7T2 |
| 83 | 1+3898004T+p7T2 |
| 89 | 1−4622352T+p7T2 |
| 97 | 1+15287710T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.071159579036313765488612344936, −8.307326242178764360213311089958, −7.43797041371714104235115889488, −6.55420609023195689836301393387, −5.48907396589703104925563490100, −4.19082152679254813852217824035, −3.59227678257679080343846517684, −2.34220061013318116921341156866, −1.31369187873096679021517084345, 0,
1.31369187873096679021517084345, 2.34220061013318116921341156866, 3.59227678257679080343846517684, 4.19082152679254813852217824035, 5.48907396589703104925563490100, 6.55420609023195689836301393387, 7.43797041371714104235115889488, 8.307326242178764360213311089958, 9.071159579036313765488612344936