Properties

Label 2-588-1.1-c7-0-6
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $183.682$
Root an. cond. $13.5529$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s + 248.·5-s + 729·9-s − 2.96e3·11-s − 1.17e4·13-s − 6.70e3·15-s − 2.26e4·17-s − 2.27e4·19-s + 4.62e4·23-s − 1.64e4·25-s − 1.96e4·27-s − 1.14e5·29-s − 1.41e5·31-s + 8.01e4·33-s + 3.86e5·37-s + 3.16e5·39-s − 1.79e5·41-s + 4.75e5·43-s + 1.81e5·45-s − 2.17e5·47-s + 6.12e5·51-s + 1.98e6·53-s − 7.37e5·55-s + 6.14e5·57-s − 6.21e5·59-s + 2.82e6·61-s − 2.91e6·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.888·5-s + 0.333·9-s − 0.672·11-s − 1.48·13-s − 0.513·15-s − 1.11·17-s − 0.761·19-s + 0.793·23-s − 0.210·25-s − 0.192·27-s − 0.874·29-s − 0.852·31-s + 0.388·33-s + 1.25·37-s + 0.854·39-s − 0.407·41-s + 0.912·43-s + 0.296·45-s − 0.305·47-s + 0.646·51-s + 1.83·53-s − 0.597·55-s + 0.439·57-s − 0.393·59-s + 1.59·61-s − 1.31·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(183.682\)
Root analytic conductor: \(13.5529\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.140588534\)
\(L(\frac12)\) \(\approx\) \(1.140588534\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 27T \)
7 \( 1 \)
good5 \( 1 - 248.T + 7.81e4T^{2} \)
11 \( 1 + 2.96e3T + 1.94e7T^{2} \)
13 \( 1 + 1.17e4T + 6.27e7T^{2} \)
17 \( 1 + 2.26e4T + 4.10e8T^{2} \)
19 \( 1 + 2.27e4T + 8.93e8T^{2} \)
23 \( 1 - 4.62e4T + 3.40e9T^{2} \)
29 \( 1 + 1.14e5T + 1.72e10T^{2} \)
31 \( 1 + 1.41e5T + 2.75e10T^{2} \)
37 \( 1 - 3.86e5T + 9.49e10T^{2} \)
41 \( 1 + 1.79e5T + 1.94e11T^{2} \)
43 \( 1 - 4.75e5T + 2.71e11T^{2} \)
47 \( 1 + 2.17e5T + 5.06e11T^{2} \)
53 \( 1 - 1.98e6T + 1.17e12T^{2} \)
59 \( 1 + 6.21e5T + 2.48e12T^{2} \)
61 \( 1 - 2.82e6T + 3.14e12T^{2} \)
67 \( 1 + 1.16e5T + 6.06e12T^{2} \)
71 \( 1 + 4.03e6T + 9.09e12T^{2} \)
73 \( 1 + 4.64e6T + 1.10e13T^{2} \)
79 \( 1 - 2.13e6T + 1.92e13T^{2} \)
83 \( 1 - 5.90e6T + 2.71e13T^{2} \)
89 \( 1 - 5.17e6T + 4.42e13T^{2} \)
97 \( 1 + 3.70e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.650569158209455966238569234194, −8.900509167933260419612258596727, −7.60859981894863558786993166423, −6.85714101573619682500541004939, −5.84710180289093952537229717259, −5.13137851982693831117795895219, −4.21669866148626745770699385814, −2.58841684782817055432475662442, −1.93562092494232212087260294993, −0.44406992702826232265840004663, 0.44406992702826232265840004663, 1.93562092494232212087260294993, 2.58841684782817055432475662442, 4.21669866148626745770699385814, 5.13137851982693831117795895219, 5.84710180289093952537229717259, 6.85714101573619682500541004939, 7.60859981894863558786993166423, 8.900509167933260419612258596727, 9.650569158209455966238569234194

Graph of the $Z$-function along the critical line